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ABSTRACT 
Rapid, accurate structural health monitoring (SHM) assesses damage to optimise decision-making. 
Many SHM methods are designed to track nonlinear stiffness changes as damage. However, highly 
nonlinear pinched hysteretic systems are problematic in SHM. Model-based SHM often fails as any 
mismatch between model and measured response dynamics leads to significant error. Thus, model-
free methods of hysteresis loop tracking methods have emerged. This study compares the 
robustness and accuracy in the presence of significant measurement noise of the proven hysteresis 
loop analysis (HLA) SHM method with 3 emerging model-free methods and 2 further novel 
adaptations of these methods using a highly nonlinear, 6-story numerical structure to provide a 
known ground-truth. 

Mean absolute errors in identifying a known nonlinear stiffness trajectory assessed at four points 
over two successive ground motion inputs from September 2010 and February 2011 in Christchurch 
range from 1.71-10.52%. However, the variability is far wider with maximum errors ranging from 
3.90-49.72%, where the second largest maximum absolute error was still 19.74%. The lowest mean 
and maximum absolute errors were for the HLA method. The next best method had mean absolute 
error of 2.92% and a maximum of 10.51%. 

These results show the clear superiority of the HLA method over all current emerging model-free 
methods designed to manage the highly nonlinear pinching responses common in reinforced 
concrete structures. These results, combined with high robustness and accuracy in scaled and full-
scale experimental studies, provide further validation for using HLA for practical implementation. 
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1 INTRODUCTION 
It is important to assess damage after an earthquake. The lack of reliable, accurate SHM methods led to 
significant disagreements about the level of damage and remaining lifetime of structures in Christchurch, 
New Zealand after the events of 2010-2011, delaying repair and recovery (Clifton 2011, Johnson 2016). 

The primary purpose of SHM methods is detecting the presence, location, and the severity of damage after 
major external loads (Doebling 1998, Housner 1997). Existing structural damage identification methods 
typically fall into model-based and model-free methods (Fan 2011). In model-based methods, a computer 
model of the real structure is identified by comparing model simulated and measured responses e.g. (Chase 
2005a, 2005b, 2005c, Nayyerloo 2011, Zhou 2017d). Model-free methods depend only on the measured 
responses by sensors e.g. (Xu 2014, Zhou 2016, 2017a, 2019, 2017b, 2015, 2017d). 

Model-based methods can successfully assess damage when the adopted baseline model contains the 
observed dynamics of the real structure. However, there is always some uncertainty in selecting a baseline 
model and its dynamics, particularly for nonlinear cases. Any mismatch increases the risk of incorrect 
damage estimation for model-based methods, limiting their ability (Zhou 2017d). In addition, most model-
based and many model-free methods require human input to guide identification, limiting applicability after 
an event (Zhou 2016). 

Lately, a multiple linear regression approach has accurately identified linear and nonlinear structural stiffness 
from force-deformation loops across multiple events with inter-event consistency not displayed by other 
methods, which often does not even consider this consistency between events (Xu 2015, 2014, Zhou 2017a, 
2015). This hysteresis loop analysis (HLA) method is fully automated, unlike many SHM methods, and has 
been validated on full-scale and test structures (Zhou 2017a, 2019, 2017b, 2017d).  

This study compares the capability of HLA with some Piecewise Linear Representation (PLR) based SHM 
methods (Keogh 2001, Salvador 2004) to identify the evolution of elastic stiffness for a numerical 6-story 
structure with highly nonlinear hysteretic pinched behaviour under two successive earthsuakes of September 
2010 and February 2011 hit Christchurch. 

2 SHM METHODS 

2.1 Numerical model 

Mechanical properties of the 6-story numerical structure is summarised in Table 1, and the highly nonlinear 
pinching behaviour simulated by a slip-lock Baber-Noori model (Baber 1985, 1986) is depicted 
schematically in Figure 1. The dynamic equation of motion for the building under a seismic vibration is: 

𝐹𝐹(𝑡𝑡) =  −𝑀𝑀𝑀𝑀�̈�𝑥𝑔𝑔(𝑡𝑡) −𝑀𝑀�̈�𝑋(𝑡𝑡) − 𝐶𝐶�̇�𝑋(𝑡𝑡) (1) 

where 𝑀𝑀 and 𝐶𝐶 are the mass and damping matrices, �̇�𝑋 and �̈�𝑋 are vectors of structural velocity and 
acceleration, and �̈�𝑥𝑔𝑔 is the input seismic acceleration. 𝐹𝐹(𝑡𝑡) is the nonlinear restoring force vector, which is 
decoupled to the inter-story restoring force, 𝑓𝑓(𝑡𝑡), for each floor, 𝑖𝑖: 

𝑓𝑓𝑖𝑖(𝑡𝑡) =  ∑ 𝐹𝐹𝑗𝑗(𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗=𝑖𝑖  (2) 

where 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 is the number of stories, and 𝑓𝑓(𝑡𝑡) is defined (Baber 1985, 1986, Wen 1976) : 

𝑓𝑓(𝑡𝑡) =  𝛼𝛼𝐾𝐾0𝑥𝑥 + (1 − 𝛼𝛼)𝐾𝐾0𝑧𝑧 (3) 

where 𝐾𝐾0 and 𝛼𝛼 are the initial elastic stiffness and post-yielding ratio, respectively. The relationship between 
the inter-story-displacement, 𝑥𝑥, and hysteretic displacement, 𝑧𝑧, can be obtained for each story (Baber 1985, 
1986, Pelliciari 2018, Sengupta 2013): 
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Story Mass (Kg)  Initial stiffness (kN/m) 

1 200 450 

2 250 350 

3 250 300 

4 275 400 

5 285 500 

6 285 600 

5% Damping ratio for the first two modes. 
 

 

Table1: Mechanical properties of the numerical 6-
story structure. 

Figure 1: Schematic image depicting highly nonlinear 
pinching behavior. 

�̇�𝑧
�̇�𝑥

= ℎ(𝑧𝑧) × 𝐴𝐴− 𝜈𝜈(𝛽𝛽𝑛𝑛𝑖𝑖𝑔𝑔𝑛𝑛(�̇�𝑥𝑧𝑧)+ 𝛾𝛾)|𝑧𝑧|𝑛𝑛

𝜂𝜂  (4) 

where 𝐴𝐴, 𝛽𝛽, 𝑛𝑛 and 𝛾𝛾 are the dimensionless shape parameters of hysteretic loops, 𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛 is the signum function. 
The parameters 𝜂𝜂 and 𝜈𝜈 are the stiffness and strength degradation functions defined: 

𝜂𝜂(𝑡𝑡) = 1 +  𝛿𝛿𝜂𝜂𝜀𝜀(𝑡𝑡) (5) 

𝜐𝜐(𝑡𝑡) = 1 +  𝛿𝛿𝜐𝜐𝜀𝜀(𝑡𝑡) (6) 

𝜀𝜀(𝑡𝑡) = (1 − 𝛼𝛼) 𝐾𝐾𝑒𝑒
𝑚𝑚

 ∫ 𝑧𝑧(𝜏𝜏)�̇�𝑥(𝑡𝑡)𝑑𝑑𝜏𝜏𝑛𝑛
0  (7) 

where 𝜀𝜀(𝑡𝑡) is the total dissipated energy, and the constants 𝛿𝛿𝜂𝜂 and 𝛿𝛿𝜐𝜐 determine the rate of strength and 
stifness degradation. The term ℎ(𝑧𝑧) in Equation 4 is the pinching function: 

ℎ(𝑧𝑧) = 1 −  𝜉𝜉1𝑒𝑒
−�𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑛𝑛(�̇�𝑥)−𝑞𝑞𝑧𝑧𝑢𝑢

𝜉𝜉2
�
2
 (8) 

where the pinching initiation parameter, 𝑞𝑞, is a constant and the ultimate value of 𝑧𝑧, given by 𝑧𝑧𝑢𝑢, is defined: 

𝑧𝑧𝑢𝑢(𝑡𝑡) =  � 1
𝜐𝜐(𝛽𝛽+𝛾𝛾)

𝑛𝑛  (9) 

𝜉𝜉1(𝑡𝑡) =  𝜉𝜉0�1 − 𝑒𝑒−𝑝𝑝𝑝𝑝(𝑛𝑛)� (10) 

𝜉𝜉2(𝑡𝑡) = �𝜓𝜓 + 𝛿𝛿𝜓𝜓𝜀𝜀� × (𝜆𝜆 + 𝜉𝜉1) (11) 

where  𝜉𝜉0 is the measure of total slip, 𝑝𝑝 controls the pinching slope, 𝜓𝜓 is a constant contributing to the 
pinching magnitude, 𝛿𝛿𝜓𝜓 is a constant controlling the pinching rate, and 𝜆𝜆 is a small constant controlling the 
variation of parameters 𝜉𝜉1 and 𝜉𝜉2 (Pelliciari 2018). The required parameters for the Bouc-Wen-Baber-Noori 
(BWBN) model are summarised in Table 2. 

The structure is subjected to two successive earthquakes and estimated elastic stiffness is compared with the 
true values at four specific stages as shown in Figure 2. Stages I and III assess initial estimates at the 
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beginning of two major events. Stages II and III assess accuracy across events. Finally, Stages II and IV 
assess accuracy over a single major event. 

Table 2: BWBN model parameters for the numerical structure. 

Story 𝜶𝜶 𝒑𝒑 𝒒𝒒 𝝀𝝀 𝝍𝝍 𝝃𝝃𝟎𝟎 𝜹𝜹𝝍𝝍 𝜹𝜹𝜼𝜼 𝜹𝜹𝝊𝝊 

1 - 5 0.2 0.2 0.01 0.05 0.1 0.95 0.001 0.001 0.001 

6 0.2 0.2 0.01 0.01 0.1 0.95 0.005 0.001 0.001 

with the shape parameters of 𝐴𝐴 = 1 ,  𝛽𝛽 = 0.5 , 𝛾𝛾 = 0.5 , 𝜈𝜈 = 1 and 𝑛𝑛 = 2. 

 

 

Figure 2: Four stages (I-IV) to compare estimated elastic stiffness of the numerical building over the 
Christchurch earthquakes of September 2010 and February 2011. 

2.2 HLA method 

The model-free, mechanics-relevant HLA method, as given in detail in (Zhou 2017b, 2015), uses regression 
and a hypothesis test to estimate elastic stiffness evolution from reconstructed hysteresis loops. HLA is 
computationally straightforward and automated, with no user-input required. It performs in real-time for each 
half cycle. Therefore, SHM results can be available after an earthquake (Zhou 2017a, 2017b, 2017c, 2015). 

2.3 PLR-based methods 

PLR-based techniques are model-free methods, where a half cycle of length N, is approximated by K linear 
segments whose slopes represent stiffness. Most PLR-based algorithms can be classified into one of the three 
main groups: 1- Sliding Windows (SW), 2- Top-Down (TD), and 3- Bottom-Up (BU). These algorithms are 
introduced in details and their pseudocodes are available in (Keogh 2001, Salvador 2004).  

The regression process in these methods terminates until a stopping criteria is met. Here, the regression 
standard error with a threshold of SE=10 chosen to play this role. Thus, results of these methods can be very 
sensitive to thresholds, and cannot be easily automated. Moreover, models created by these algorithms are 
typically disjointed with non-continuous derivatives. To address these issues, modified versions of SW and 
TD methods: 4- Constrained Sliding Windows (CSW), and 5- Modified Top-Down (MTD) are proposed. 

CSW is proposed to produce a smoother model. In CSW, the first point of the first linear segment is (0,0), 
from which the slope of the best line fit to the data points creates the first linear segment. For the second 
segment, the line is constrained to cross the last point of the previous fitted segment. This process repeats for 
the next segments until the half-cycle reconstruction is complete. 
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The MTD method is proposed to decrease the sensitivity of PLR-based methods to the user-specified 
threshold and the presence of noise. In the MTD method, each half-cycle is checked to see if it can be 
represented just by a single linear segment or not. If the R-squared  𝑅𝑅2 value of this linear segment is above a 
user-selected minimum value, it can be modelled by one segment. Otherwise, the half-cycle must be further 
divided. In this study, the R-squared threshold is 𝑅𝑅2 = 0.99  for noise-free conditions and 𝑅𝑅2 = 0.95 for 
noisy cases. These values usually remain unchanged and avoid overfitting. 

Since structural hysteresis loops have a range of known fundamental patterns, the maximum number of 
breakpoints can be estimated as (7 =  23 − 1) for half-cycles with pinched nonlinear behavior. The best 
locations of these breakpoints are obtained by the recursive approach employed in the TD algorithm. Extra 
breakpoints must be pruned to prevent overfitting. For pruning, small segments are merged with adjacent 
segments. In this paper, the minimum length of the segments is limited to 3 samples. 

2.4 Analyses 

To compare the performance of the SHM methods, 10% root mean square (RMS) noise is added to simulated 
measurements sampled at 250Hz rate (Zhou 2016). Because of the random nature of noise, each method is 
run 20 times and the average results are reported in a Monte Carlo approach similar to (Moghaddasi 2011). 

3 RESULTS AND DISCUSSION 

Table 3 compare methods with 10% added RMS noise and without noise at a realistic sampling rate of 
250Hz. As expected, noise reduce the accuracy of all methods. Although, TD is the least robust method to 
noise with the maximum error of 49.72% , MTD works significantly better in noisy conditions. Maximum 
error of all methods, except HLA, is higher than 10% in the presence of noise, which makes them unreliable. 
The mean error of HLA only increased by 1.09% to 1.71% when 10% noise is added. Therefore, HLA is 
highly robust to sensor noise and considerably better than the other methods presented here. 

Table 3: Maximum and mean absolute errors for elastic stiffness over all 6 stories for each SHM 
method (Noise = 0% ,10% ; Sampling rate = 250Hz); Results are reported in percent. 

 

 Noise-free 10% Noise 

 Mean Max SD Mean Max SD 

SW 0.76 5.40 1.13 4.80 13.29 4.00 

CSW 0.57 4.51 0.93 2.99 13.76 3.28 

BU 0.34 1.03 0.29 4.75 19.74 4.46 

TD 0.40 1.07 0.35 10.52 49.72 13.63 

MTD 0.31 1.30 0.34 2.92 10.51 2.54 

HLA 0.62 1.85 0.37 1.71 3.90 1.10 

 

Figure 3 compares the performance of HLA with the other methods in identifying the evolution of elastic 
stiffness for the 6th floor in the noisy condition. It is visually apparent the estimated elastic stiffness at stages 
II and III are almost equal for all methods, which is essential for a reliable SHM method. All the methods, 
except SW, worked slightly better than HLA in identifying the initial stiffness at Stage I, but not enough to 
guarantee better accuracy or to be meaningful in decision-making, as Stage I is the before event value. At the 
other stages, HLA significantly performs better. 



Paper 41 – Robustness and accuracy of model-free structural health monitoring 

NZSEE 2020 Annual Conference 

 

 

Figure 3: Elastic stiffness of Story 6 estimated by the SHM methods (Noise = 10%; Sampling rate = 250Hz) . 

PLR-based algorithms require always some human-input parameters to be tuned (Keogh 2001, Salvador 
2004). So they are not general or automated. Moreover, their accuracy is too sensitive to the level of sensor 
noise, as seen in the results. Although the modifications applied made MTD more robust to noise compared 
to the other PLR-based algorithms, it was not sufficient to challenge the HLA. Moreover, MTD still depends 
on human inputs and render the algorithm less general. 

HLA requires no human inputs and determines the evolution of elastic stiffness over time from the measured 
responses automatically. Results show HLA, as expected, is very robust to sensor noise. HLA performance 
for noisy and real-world conditions has been proven numerically and experimentally (Zhou 2016, 2017a, 
2019, 2017b, 2017c, 2017d). 

A single test structure with a full range of nonlinearity should be employed to test the robustness of the 
methods and validate these simulated-based results over all methods. HLA is already well-proven for full-
scale and scaled test structures on several studies (Zhou 2017a, 2019, 2017b, 2017c, 2017d). 

4 CONCLUSIONS 
In this paper, five model-free methods are employed to challenge HLA for identifying structural elastic 
stiffness. For this purpose, a simulated highly nonlinear pinched hysteretic structure is subjected to two 
major earthquakes to investigate their robustness, consistency and accuracy. Identified stiffness values are 
compared to simulated known values at four Stages (I-IV) across two events for each method.  
• HLA is the most accurate method, particularly when avoiding maximum errors. 
• The overall results show how methods can vary significantly despite similarities. 
• HLA is implemented in an automated function requiring no user input, while all model-free PLR-based 

methods need human inputs and priori knowledge to be tuned for a good performance. 
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