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ABSTRACT 
Damping forces are always present in real structures, occurring in several different forms, making them 
challenging to model expressly. Damping is often assumed to be viscous in nature, due to the simplicity of 
the mathematics, sometimes inappropriately when large friction forces are present. 

This research aimed to determine a relationship between a friction-based single degree of freedom (SDOF) 
structure’s assumed equivalent viscous damping ratio and the coefficient of friction. 

This research focused on mathematically modelling the dynamic response of a theoretical single-storey 
structure, behaving linear elastically, to an applied harmonic load in two different damping cases namely the 
common assumption of viscously underdamped and a friction damping case, using an alternative approach 
that simplifies the traditionally non-linear solution to a linear one.  

The physical model was idealised as an SDOF spring-mass-damper system and the mathematics of the 
general solutions for this system’s responses to different damping cases and vibration types introduced. 
Notably covering the classic non-linear approach to friction damping, for comparison. The simplified 
response for the friction damped case under harmonic excitation, was derived from first principles by 
adapting a method proposed for free friction damped vibration. 

The system’s response for a range of common viscous damping ratios are analysed. The same analysis being 
performed for a range of different friction coefficients. 

Ultimately the damping ratios and friction coefficients are compared, those causing similar responses from 
the system were selected, and a simple initial relationship between the viscous and friction damped cases 
determined for the selected cases. 
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1 INTRODUCTION 
Simplification and idealisation of structural systems into simple spring-mass-damper systems is an effective 
method of analysing a structure’s dynamics. Damping reduces oscillations or vibrations in a system, physical 
systems produce damping through processes that dissipate energy stored in the vibrations. Viscously damped 
SDOF systems are well studied in literature but most sources seem to shy away from friction damped SDOF 
systems. 

Sliding friction is generated when two surfaces that press against each other are in relative motion or 
vibrating, dissipating kinetic energy into heat i.e. damping. This is generally called Coulomb damping after 
Charles-Augustin de Coulomb, here the frictional damping force always opposes the direction of motion of 
the system, creating a non-linear system that has a piecewise exact solution.  

This paper starts by reviewing free as well as harmonically forced vibration of viscously and friction damped 
systems, looking at a method proposed by Rizcallah (2019) to simplify the mathematics of friction damping. 
For the forced vibration of the friction-based system, an expression is derived using the simplified method. 
The governing equations are numerically solved and plotted using MATLAB programming language. 

1.1 Viscously damped SDOF 

 

Figure 1: (a) Mass-spring-damper system sliding over a frictionless surface (b) Free-body diagram of the 
system in free vibration. 

It is not possible to have a system that vibrates indefinitely with a constant amplitude at its natural frequency. 
Ever present frictional or damping forces dissipate energy, transforming the energy into other forms. How 
this energy transformation occurs is not yet fully understood.  

In the dynamic analysis of structures, it is typically assumed that the damping forces within a structure or 
system act in the opposite direction of motion and are proportional to the system’s velocity. This type of 
damping force could be experienced by a body that’s motion is restrained by a viscous fluid which surrounds 
it. 

Assuming viscous damping in a system is primarily used as it can often appropriately represent actual 
damping sources and because of the linearity and simplicity of its mathematics. 

Figure 1(a) shows a SDOF mass-spring-damper system with no externally applied force, where c is the 
viscous damping coefficient, and the viscous damper is represented by a simple dashpot. Figure 1(b) shows 
the free-body diagram of the system with the damping force 𝐹𝐹𝐷𝐷 = 𝑐𝑐�̇�𝑢 showing the assumption of 
proportionality between damping and velocity. 

The full derivation of the general solution is covered in depth by Chopra (2017) and Ramhormozian (2020),  
and here only the final general solution for an underdamped system will be given. 
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As the damping coefficient for real structural systems has been found to be quite a bit smaller than their 
critical damping coefficient, the underdamped case of the general solution is the one of interest, given by the 
simplified expression: 

𝒖𝒖(𝒕𝒕) = 𝑪𝑪𝒆𝒆−𝝃𝝃𝝎𝝎𝒏𝒏𝒕𝒕 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝑫𝑫𝒕𝒕 − 𝜶𝜶) 
(1) 

Where 𝐶𝐶 = �𝑢𝑢02 + (𝑣𝑣0+𝑢𝑢0𝜉𝜉𝜔𝜔𝑛𝑛)2

𝜔𝜔𝐷𝐷
2   and 𝛼𝛼 = tan−1 �(𝑣𝑣0+𝑢𝑢0𝜉𝜉𝜔𝜔𝑛𝑛)

𝜔𝜔𝐷𝐷𝑢𝑢0
� 

The system has a natural undamped frequency of 𝜔𝜔𝑛𝑛, and at time 𝑡𝑡 = 𝑡𝑡0, the systems initial displacement and 
velocity are 𝑢𝑢0 and 𝑣𝑣0  respectively. 𝜉𝜉 is the damping ratio of the system, calculated as 𝜉𝜉 = 𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐
 , where 𝑐𝑐 is 

the system’s viscous damping coefficient and 𝑐𝑐𝑐𝑐𝑐𝑐 is its critical viscous damping coefficient. 

Ramhormozian (2020) notes that real structures’ damping ratios typically range between 2% and 10%.  

The damped angular frequency of the system 𝜔𝜔𝐷𝐷, given in 𝑐𝑐𝑟𝑟𝑟𝑟
𝑠𝑠

 , is calculated as  

𝝎𝝎𝑫𝑫 = 𝝎𝝎𝒏𝒏�𝟏𝟏 − 𝝃𝝃𝟐𝟐 
(2) 

It follows that the damped period of vibration and damped frequency of the system are then 𝑻𝑻𝑫𝑫 = 𝟐𝟐𝝅𝝅
𝝎𝝎𝑫𝑫

 and 

𝑭𝑭𝑫𝑫 = 𝟏𝟏
𝑻𝑻𝑫𝑫

 . 

Equation 1 is graphically illustrated in Figure 2. The amplitude is observed to decrease exponentially with 
time, with the upper and lower envelope lines of the displacement-time curve described by the equations 

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒆𝒆𝒖𝒖(𝒕𝒕) = 𝑪𝑪𝒆𝒆−𝝃𝝃𝝎𝝎𝒏𝒏𝒕𝒕 
𝒖𝒖𝒍𝒍𝒄𝒄𝒍𝒍𝒆𝒆𝒖𝒖(𝒕𝒕) = −𝑪𝑪𝒆𝒆−𝝃𝝃𝝎𝝎𝒏𝒏𝒕𝒕 

(3) 

 

Figure 2: Displacement vs. time graph of the viscously underdamped system in free vibration. 
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1.2 Classically coulomb damped 

This section first introduces piecewise expressions for friction or Coulomb damped free vibration as outlined 
by Chopra (2017). Then the next section looks at another method of defining friction as a harmonic force, 
proposed by Rizcallah (2019). 

 

Figure 3: (a) Mass-Spring system sliding against a dry surface (b) & (c) Free-body diagrams of the system 
for both directions of motion. 

Figure 3(a) shows a SDOF mass-spring system where the mass is sliding against a dry surface that has the 
dimensionless friction coefficient 𝜇𝜇. Coulomb damping results from this friction force, 𝐹𝐹𝑓𝑓 = 𝜇𝜇𝑁𝑁, where 𝑁𝑁 is 
the normal force between the sliding surfaces and 𝜇𝜇 is assumed the same for static and kinetic friction. The 
assumption is that once motion begins, friction is independent from velocity, differing from viscous damping 
explained previously. Friction acts in opposition to motion, changing direction or sign when the motion 
changes direction.  

 

Figure 4: Friction force vs. time graph illustrating period alternation of friction with every half-cycle. 

Assuming that the motion of system is periodic, the friction force vs time is as seen in Figure 4 above, 
changing direction with every half-cycle. 

Chopra (2017) noted that the natural period of a system that is Coulomb damped is equal to that of the same 
system without damping, while viscous damping lengthens the natural vibration period. 

Because of the nature of friction discussed above, two different equations of motion need to be formulated 
and solved, valid for a specific direction of motion. This section looks at when the system in Figure 3(a) is 



Paper 156 – An attempt to determine a relationship between a mass-spring-friction damper single-degree ... 

NZSEE 2021 Annual Conference 

 

freely vibrating and there is no externally applied force i.e. 𝐹𝐹(𝑡𝑡) = 0. The equation of motion that governs 
when the mass in Figure 3(c) is moving right to left is given in Equation (4) below 

𝒎𝒎�̈�𝒖 + 𝒌𝒌𝒖𝒖 = 𝑭𝑭𝒇𝒇 
(4) 

the solution to which is 

𝒖𝒖(𝒕𝒕) = 𝑨𝑨𝟏𝟏 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + 𝑩𝑩𝟏𝟏 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) + 𝒖𝒖𝑭𝑭  
(5) 

where 𝑢𝑢𝐹𝐹 = 𝐹𝐹
𝑘𝑘
 .When the mass moves left to right, as seen in Figure 3(b), the governing equation changes to 

𝒎𝒎�̈�𝒖 + 𝒌𝒌𝒖𝒖 = −𝑭𝑭𝒇𝒇 
(6) 

and its solution is 

𝒖𝒖(𝒕𝒕) = 𝑨𝑨𝟐𝟐 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + 𝑩𝑩𝟐𝟐 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) − 𝒖𝒖𝑭𝑭  
(7) 

The constant 𝑢𝑢𝐹𝐹 and 𝜔𝜔𝑛𝑛 = �𝑘𝑘
𝑚𝑚

 are interpreted by Chopra (2017) as the spring’s static deformation caused by 

the friction force 𝐹𝐹𝑓𝑓. The arbitrary constants 𝐴𝐴1,𝐵𝐵1;𝐴𝐴2,𝐵𝐵2 are found from the initial conditions, which 
change for each successive half-cycle of motion. Because of this, the linear governing equations change with 
every half-cycle of motion, creating a non-linear problem.  

For some given initial conditions, 𝑡𝑡0 = 0,𝑢𝑢(𝑡𝑡0) = 𝑢𝑢0, �̇�𝑢(𝑡𝑡0) = 𝑣𝑣0 = 0, the system in Figure 3(a) will vibrate 
freely until it comes to rest and stops moving. For brevity, in this paper the generalised equations given in 
Rizcallah (2019) are used instead of more complicated solution presented in Chopra (2017). 

the general solution to the system’s displacement response over time is 

𝒖𝒖(𝒕𝒕) = (𝒖𝒖𝟎𝟎 − (𝟏𝟏 + 𝒌𝒌𝒏𝒏)𝒖𝒖𝑭𝑭) 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + (−𝟏𝟏)𝒏𝒏𝒖𝒖𝑭𝑭 
(8) 

 

  



Paper 156 – An attempt to determine a relationship between a mass-spring-friction damper single-degree ... 

NZSEE 2021 Annual Conference 

 

 

Figure 5: Displacement vs time graph of the free vibrating system with Coulomb damping. 

The displacement response of the system in Figure 3(a) is shown in Figure 5. Observe that, with each motion 
cycle, the amplitude reduces by 4𝑢𝑢𝐹𝐹 meaning that the envelopes are linear functions as opposed to 
exponential in the case of viscous damping. The equations of which are easily determined as 

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒆𝒆𝒖𝒖(𝒕𝒕) = −�
𝟒𝟒𝒖𝒖𝑭𝑭
𝑻𝑻𝒏𝒏

� + 𝒖𝒖𝟎𝟎 

𝒖𝒖𝒍𝒍𝒄𝒄𝒍𝒍𝒆𝒆𝒖𝒖(𝒕𝒕) = �
𝟒𝟒𝒖𝒖𝑭𝑭
𝑻𝑻𝒏𝒏

� − 𝒖𝒖𝟎𝟎 

(9) 

Coulomb damping of a freely vibrating system causes its motion to stop when the amplitude at the end of a 
half-cycle is less than 𝑢𝑢𝐹𝐹. This means that the friction force is greater than the spring force acting on the 
mass. The end condition for free vibration of a Coulomb damped system is given by the inequality 

𝑭𝑭𝒄𝒄 = 𝒌𝒌|𝒖𝒖(𝒕𝒕)| < 𝑭𝑭𝒇𝒇 = 𝝁𝝁𝝁𝝁 
(10) 

for any time t. 

Note that the final resting of the mass is not at its original equilibrium position but at a different position. 
This displacement is a permanent deformation where the spring force and friction force are locked in and the 
system would need externally applied energy such as jarring or shaking to restore it to equilibrium.  

Coulomb damping must play a role in damping of real structures explains Chopra (2017), especially as this is 
the only mechanism that can halt the motion of a freely vibrating system. Chopra (2017) notes that if 
damping in structures was purely viscous, their motion would theoretically continue forever at ever tinier 
amplitudes, see Figure 2. Although Coulomb damping must exist in structures, it is not often considered, 
unless friction damping devices are used in structure.  

Equivalent viscous damping ratios can be obtained to approximate dynamic responses, this is probably due 
to the lack of knowledge around friction damping and the non-linearity of its nature when compared to 
viscous damping’s simple linear formulation. Rizcallah (2019) proposed an alternative solution to Coulomb 
damping, that would simplify the mathematics, this is explained in the next section. 
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1.3 Equivalent harmonic friction damping force 

As previously explained, the frictional damping force always opposes the direction of motion of the system, 
creating a non-linear system that has a piecewise exact solution. Sliding friction has a constant magnitude, 
independent of the system’s velocity, displacement or surface area and is often replaced by the linear viscous 
damping model in vibrations. 

Rizcallah (2019) proposed to approximate the Coulomb friction force with an appropriate harmonic, 
specifically sinusoidal, resistive force. 

 

Figure 6: (a) Mass-Spring system sliding against a dry surface (b) Free-body diagram of the system. 

To begin with, Rizcallah (2019) modifies the equation of motion shown in Equation (11 for Figure 6(b), 
which combines the two cases of motion from Equations (4 and (6 

𝒎𝒎�̈�𝒖 + 𝒌𝒌𝒖𝒖 = ±𝑭𝑭𝒇𝒇 
(11) 

By replacing the right-hand side with a sinusoidal resistive force 

𝒎𝒎�̈�𝒖 + 𝒌𝒌𝒖𝒖 = 𝑭𝑭𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝑭𝑭𝒕𝒕) 
(12) 

Figure 7(a) and (b) shows the new system created by replacing the friction force with an equivalent harmonic 
force. 

 

Figure 7: (a) Mass-Spring system with an externally applied equivalent harmonic friction force (b) Free-
body diagram of the system. 

The equivalent force has a forcing angular frequency of 𝜔𝜔𝐹𝐹. Euler’s equations allow the solution to follow an 
initial value problem, yielding a general solution of displacement, similar to that obtained from the forced 
harmonic excitation of an undamped system. 
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𝒖𝒖(𝒕𝒕) = 𝑨𝑨𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + 𝑩𝑩𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) −
𝑭𝑭
𝒎𝒎

𝝎𝝎𝑭𝑭
𝟐𝟐 − 𝝎𝝎𝒏𝒏

𝟐𝟐 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝑭𝑭𝒕𝒕) 
(13) 

Initial conditions of 𝑡𝑡0 = 0,𝑢𝑢(𝑡𝑡0) = 𝑢𝑢0, �̇�𝑢(𝑡𝑡0) = 𝑣𝑣0 = 0 are used to solve the arbitrary constants  

𝑨𝑨 = 𝒖𝒖𝟎𝟎 

𝑩𝑩 =
𝑭𝑭𝝎𝝎𝑭𝑭

𝒎𝒎𝝎𝝎𝒏𝒏(𝝎𝝎𝑭𝑭
𝟐𝟐 − 𝝎𝝎𝒏𝒏

𝟐𝟐)
 

(14) 

Such that substituting these into Equation (13 gives 

𝒖𝒖(𝒕𝒕) = 𝒖𝒖𝟎𝟎𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + �
𝑭𝑭𝝎𝝎𝑭𝑭

𝒎𝒎𝝎𝝎𝒏𝒏(𝝎𝝎𝑭𝑭
𝟐𝟐 − 𝝎𝝎𝒏𝒏

𝟐𝟐)
� 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) −

𝑭𝑭
𝒎𝒎

𝝎𝝎𝑭𝑭
𝟐𝟐 − 𝝎𝝎𝒏𝒏

𝟐𝟐 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝑭𝑭𝒕𝒕) 
(15) 

Taking the limit 𝜔𝜔𝐹𝐹 = 𝜔𝜔𝑛𝑛 of Equation (15  or lim
𝜔𝜔𝐹𝐹→𝜔𝜔𝑛𝑛

𝑢𝑢(𝑡𝑡) yields  

𝒖𝒖(𝒕𝒕) = 𝒖𝒖𝟎𝟎𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + �
𝑭𝑭

𝟐𝟐𝒎𝒎𝝎𝝎𝒏𝒏
𝟐𝟐� 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) − �

𝑭𝑭𝝎𝝎𝒏𝒏𝒕𝒕
𝟐𝟐𝒎𝒎𝝎𝝎𝒏𝒏

𝟐𝟐� 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) 
(16) 

Simplifying Equation (16 by substituting 𝑘𝑘 = 𝑚𝑚𝜔𝜔𝑛𝑛2 and collecting like terms gives 

𝒖𝒖(𝒕𝒕) = �𝒖𝒖𝟎𝟎 −
𝑭𝑭
𝟐𝟐𝒌𝒌

𝝎𝝎𝒏𝒏𝒕𝒕� 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) +
𝑭𝑭
𝟐𝟐𝒌𝒌

𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) 
(17) 

Equation (18 is illustrated in Figure 8 and here Rizcallah (2019) notes that the decay of motion is due to the 
resonance between the sinusoidal resistive force and the mass-spring system. If this solution is extrapolated 
further than the halting point, where the spring force is no longer greater than the frictional force, then an 
increasing oscillation is observed in Figure 8, which is an impossibility in a freely vibrating system.  

 

Figure 8: Illustration of the damped oscillations of a mass-spring system with a sinusoidal resistive force 
(Rizcallah, 2019). 

Rizcallah (2019) argues and proposes that the analytical solution to Equation (12) that best fits the 
frictionally underdamped solution to Equation (11) is 
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𝒖𝒖(𝒕𝒕) = �𝒖𝒖𝟎𝟎 −
𝟐𝟐𝑭𝑭𝒇𝒇
𝝅𝝅𝒌𝒌

𝝎𝝎𝒏𝒏𝒕𝒕� 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) +
𝟐𝟐𝑭𝑭𝒇𝒇
𝝅𝝅𝒌𝒌

𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) 
(18) 

where 𝐹𝐹𝑓𝑓 = 𝜇𝜇𝑁𝑁 is the friction force. 

Figure 9 compares the two results of free vibrating systems considering equivalent friction harmonic force 
and non-linear coulomb damping, showing good correlation. The equations of the upper and lower envelope 
lines remain the same as seen in Equation (9. 

 

Figure 9: Displacement vs time graph of the free vibrating system comparing the two different solutions to 
frictional damping. 
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2 CASE STUDY 

2.1 Physical model 

 

Figure 10: Physical model of the structural system under consideration 

The physical model is a typical 1-storey composite structure, with a reinforced concrete roof slab and four 
structural steel columns. The columns are fixed at the base and rigidly connected to the slab. The dimensions, 
material properties and constants used are outlined in Table 1. 

2.2 Assumptions 

• The model is assumed to behave linear elastically. 
• The roof slab is considered as a lumped mass. 
• The roof slab is considered as a rigid, so rotations at the joints are eliminated. 
• The column self-weight is negligible in this analysis as slab’s self-weight is much greater and will 

govern the vibration response. 
• Axial deformations in the beams and columns are neglected. 
• Initially only classical viscous damping is assumed present in the structure. 
• Then only Coulomb or friction damping is assumed present. 
• The structure is an underdamped system 
• The normal force is 100% of the system’s mass. 
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Physical model’s parameters are presented in below 

Table 1: Physical model’s (see Figure 10) parameters 

Property Symbol Value Unit 

Concrete Slab 

Density 𝜌𝜌𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 2400 𝑘𝑘𝑘𝑘/𝑚𝑚3 

Length 𝑎𝑎 2 𝑚𝑚 

Breadth 𝑏𝑏 2 𝑚𝑚 

Thickness 𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 300 𝑚𝑚𝑚𝑚 

Steel Columns (IPE180 Sections) 

Density 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  7850 𝑘𝑘𝑘𝑘/𝑚𝑚3 

Length 𝐿𝐿 2 𝑚𝑚 

Young’s Modulus 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 210 𝐺𝐺𝐺𝐺𝑎𝑎 

Moment of Inertia about y-y 𝐼𝐼𝑦𝑦𝑦𝑦 1320 (Tube, 2017) 𝑚𝑚𝑚𝑚4 

Constants 

Gravitational Acceleration 𝑘𝑘 9.81 𝑚𝑚/𝑠𝑠2 

Initial Conditions 

Time 𝑡𝑡0 0 𝑠𝑠 

Displacement 𝑢𝑢0 5 𝑚𝑚𝑚𝑚 

Velocity �̇�𝑢0 𝑜𝑜𝑜𝑜 𝑣𝑣0 0 𝑚𝑚/𝑠𝑠 

Acceleration �̈�𝑢0 𝑜𝑜𝑜𝑜 𝑎𝑎0 0 𝑚𝑚/𝑠𝑠2 

External Force 𝐹𝐹0 10 𝑘𝑘𝑁𝑁 
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2.3 Model idealisation 

The analysis focused on the physical model’s lateral vibration in the x-direction, see Figure 10. For analysis, 
this structure is simplified into a system consisting of a single lumped mass, springs for its columns and 
either a viscous or friction damper to represent the inherent internal damping forces within the structure. 
shows this idealisation and how the structure is further simplified into simple lollipop models, clearly 
showing that system has only a single degree of freedom in these simplifications. 

 

Figure 11: Idealisation of the physical model’s structural frame and associated “lollipop” models for the 
viscous and equivalent friction damped cases. 

The free-body diagrams for the lollipop models in Figure 11 of the two damping cases are given by Figures 
Figure 2 and Figure 12 for the viscous and equivalent friction damped cases respectively. 
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2.4 Mathematical derivation – harmonic excitation with equivalent harmonic friction 
damping 

 

Figure 12: (a) Mass-spring system that is harmonically excited and subject to a harmonic friction force  
(b) Free-body diagram of the system with the two harmonic forces acting on it. 

The dynamic equilibrium equation for vibration in the horizontal axis of the system, shown above in Figure 
12(a), is determined from the free-body diagram, seen in (b), to be 

𝒎𝒎�̈�𝒖 + 𝒌𝒌𝒖𝒖 = 𝑭𝑭𝟎𝟎 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎�𝒕𝒕) + 𝑭𝑭𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒇𝒇𝒕𝒕) 
(19) 

To find the general solution to this equation, it is broken up into more manageable pieces and then solved 
individually. The solutions added together at the end using the principle of superposition. 

Hence the general solution to Equation 19 becomes 

𝒖𝒖(𝒕𝒕) = �𝒖𝒖𝟎𝟎 −
𝟐𝟐𝑭𝑭𝒇𝒇𝝎𝝎𝒏𝒏𝒕𝒕
𝒌𝒌𝝅𝝅

 � 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + �
𝒗𝒗𝟎𝟎
𝝎𝝎𝒏𝒏

+
𝟐𝟐𝑭𝑭𝒇𝒇
𝒌𝒌𝝅𝝅

−
𝒖𝒖𝑭𝑭𝟎𝟎

𝒌𝒌(𝟏𝟏 − 𝒖𝒖𝟐𝟐)
� 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) +

𝑭𝑭𝟎𝟎
𝒌𝒌(𝟏𝟏 − 𝒖𝒖𝟐𝟐)

𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎�𝒕𝒕) 
(20) 

The expression in Equation 20 is expanded and each of the terms individually plotted to determine their 
contributions to the system’s vibration. This helped to confirm what the expressions of the transient response 
of the system, determined to be 

𝒖𝒖𝒕𝒕𝒖𝒖𝒕𝒕𝒏𝒏𝒄𝒄𝒔𝒔𝒆𝒆𝒏𝒏𝒕𝒕(𝒕𝒕) = �𝒖𝒖𝟎𝟎 −
𝟐𝟐𝑭𝑭𝒇𝒇𝝎𝝎𝒏𝒏𝒕𝒕
𝒌𝒌𝝅𝝅

 � 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + �
𝒗𝒗𝟎𝟎
𝝎𝝎𝒏𝒏

+
𝟐𝟐𝑭𝑭𝒇𝒇
𝒌𝒌𝝅𝝅

�𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕)   
(21) 

Where the friction force is 𝐹𝐹𝑓𝑓 = 𝜇𝜇𝑁𝑁.  

The steady-state response term is then made up of the remaining terms, becoming 

𝒖𝒖𝒄𝒄𝒕𝒕𝒆𝒆𝒕𝒕𝒔𝒔𝒔𝒔𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒆𝒆(𝒕𝒕) =
𝑭𝑭𝟎𝟎

𝒌𝒌(𝟏𝟏 − 𝒖𝒖𝟐𝟐)
�𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎�𝒕𝒕) − 𝒖𝒖𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕)�  

(22) 

The steady-state term in Equation 22 is not a constant and smooth sinusoidal curve when plotted, unlike in the 
case of un-damped or viscously damped. Figure 13 illustrates the individual sinusoidal curves that make up 
the oddly stepped superimposed curve of the steady-state response. 
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Figure 13: Illustration of the behaviour of the steady-state term’s sinusoidal components in (3.5.1.19). 

Therefore, the total response of a harmonically excited and frictionally damped system, using an equivalent 
harmonic friction force, shown in Figure 12(a), is given as: 

𝒖𝒖(𝒕𝒕) = �𝒖𝒖𝟎𝟎 −
𝟐𝟐𝑭𝑭𝒇𝒇𝝎𝝎𝒏𝒏𝒕𝒕
𝒌𝒌𝝅𝝅

 � 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) + �
𝒗𝒗𝟎𝟎
𝝎𝝎𝒏𝒏

+
𝟐𝟐𝑭𝑭𝒇𝒇
𝒌𝒌𝝅𝝅

�𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) +
𝑭𝑭𝟎𝟎

𝒌𝒌(𝟏𝟏 − 𝒖𝒖𝟐𝟐)
�𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎�𝒕𝒕) − 𝒖𝒖𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕)�   

(23) 

Equation (23) is illustrated in Figure 14, the transient response displaying the expected characteristic of 
eventually disappearing over time and the steady-state response constantly oscillating as expected, but in the 
unusual, stepped curve behaviour discussed previously. 

 

Figure 14: Displacement vs time graph of a harmonically excited system with an equivalent harmonic 
friction damping force. 
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The velocity response of the system is given by taking the first derivative of displacement with respect to 
time, yielding 

�̇�𝒖(𝒕𝒕) = �
𝒗𝒗𝟎𝟎
𝝎𝝎𝒏𝒏

�𝝎𝝎𝒏𝒏 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕) − �𝒖𝒖𝟎𝟎 −
𝟐𝟐𝑭𝑭𝒇𝒇
𝒌𝒌𝝅𝝅

𝝎𝝎𝒏𝒏𝒕𝒕 �𝝎𝝎𝒏𝒏 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕)

+
𝑭𝑭𝟎𝟎

𝒌𝒌(𝟏𝟏 − 𝒖𝒖𝟐𝟐)
(𝝎𝝎�𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎�𝒕𝒕) −𝝎𝝎𝒏𝒏𝒖𝒖 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕)) 

(24) 

The acceleration response, from taking the second derivative of displacement with respect to time, is 

�̈�𝒖(𝒕𝒕) = �
𝟐𝟐𝑭𝑭𝒇𝒇
𝒌𝒌𝝅𝝅

−
𝒗𝒗𝟎𝟎
𝝎𝝎𝒏𝒏

�𝝎𝝎𝒏𝒏
𝟐𝟐 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) − �𝒖𝒖𝟎𝟎 −

𝟐𝟐𝑭𝑭𝒇𝒇
𝒌𝒌𝝅𝝅

𝝎𝝎𝒏𝒏𝒕𝒕 �𝝎𝝎𝒏𝒏
𝟐𝟐 𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝒏𝒏𝒕𝒕)

+
𝑭𝑭𝟎𝟎

𝒌𝒌(𝟏𝟏 − 𝒖𝒖𝟐𝟐) �𝝎𝝎𝒏𝒏
𝟐𝟐𝒖𝒖 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎𝒏𝒏𝒕𝒕) −𝝎𝝎�𝟐𝟐 𝒄𝒄𝒔𝒔𝒏𝒏(𝝎𝝎�𝒕𝒕)� 

(25) 

2.5 Model Solution Procedure 

For the harmonically excited and damped SDOF model: 

1. Calculate system’s mass 𝑚𝑚 and lateral stiffness 𝑘𝑘 from the given parameters. 
2. Calculate the system’s natural vibration characteristics. 

For the viscous damped case: 

3. Assume a viscous damping ratio 𝜉𝜉.  

4. Calculate the system’s damped vibration characteristics. 

5. Calculate the constants for the vibration response of the system from initial conditions. 

6. Calculate the system’s displacement response, as well as velocity and acceleration responses over a set 
period, at chosen intervals of  𝑇𝑇𝐷𝐷

16
[𝑠𝑠].  

For the equivalent friction damped case: 

3. Assume a friction coefficient 𝜇𝜇.  

4. Calculate the normal 𝑁𝑁 and friction forces 𝐹𝐹𝑓𝑓 acting on the system. 

5. Calculate the system’s displacement, velocity, and acceleration responses - using Equations (23), (24) 
and (25) respectively and the given initial conditions, over a set period and at chosen intervals of  𝑇𝑇𝐷𝐷

16
[𝑠𝑠].  
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3 RESULTS 

3.1 Responses 

3.1.1 Viscous damped 

 

Figure 15: Displacement response of harmonically excited and viscously damped physical model with ξ=3% 

The model’s responses in the viscous damping case, for all the different values of 𝜉𝜉, display the expected 
behaviour. The transient displacement response reducing exponentially, shown by the envelopes, eventually 
disappearing.  

The steady-state displacement response remains constant, with smooth sinusoidal curves, the same for all the 
different values of 𝜉𝜉. 

As the viscous damping ratio increases, the model’s transient response returns to rest sooner, this can be seen 
in Figure 18 which compares all the different damping values. 
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3.1.2 Equivalent friction damped 

 

Figure 16: Displacement response of harmonically excited and equivalent friction damped physical model 
with µ=0.03 

The model’s transient displacement responses in this damping case, for all the different 𝜇𝜇 values, behaved in 
the expected manner. The transient displacement envelope confirms this behaviour of linearly decreasing 
peaks, typical of classic Coulomb damping in free vibration and emulated by the equivalent harmonic 
friction damping method discussed previously in Section 1.3 of this paper.  

As the friction coefficient increases, the model’s transient response decreases quicker, coming to rest sooner, 
see Figure 18. 

Figure 17 confirms that the transient displacement, velocity and acceleration responses of the equivalent 
friction damped model behave as expected of harmonic curves. Their respective peaks, zero points and 
troughs being separated by 𝜋𝜋2  𝑜𝑜𝑎𝑎𝑟𝑟 from one another.  

However, as noted in the derivation of the steady-state expression in Section 2.4, the model’s steady-state 
displacement responses, the same for all the different 𝜇𝜇 values, display as constant “stepped” sinusoidal 
curves. 

This is as opposed to the smooth steady-state response curves seen in Figure 15, the viscous damping case. 
Note the larger amplitude of the steady-state response in the friction damped case, resulting in total 
displacement response peaks greater than the initial displacement condition between 0.1s and 0.3s. The 
amplitude of the steady-state response remains constant as the friction coefficient value increases, which is 
expected. 
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Figure 17: Comparison of transient displacement, velocity, and acceleration responses for the friction 
damped case. Shows the relationship between the curves. 
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3.2 Comparisons 

 

Figure 18: Transient responses of the SDOF system with the different damping values considered for the 
friction and viscous damped cases. Chosen halting point is indicated and compared for each plot. 



Paper 156 – An attempt to determine a relationship between a mass-spring-friction damper single-degree ... 

NZSEE 2021 Annual Conference 

 

Figure 18 illustrates how, during the analysis, it was discovered that for certain values of viscous damping 
ratios and friction coefficients, the given physical model would effectively return to equilibrium at very 
similar times in free vibration.  

This paper decided that the model would be returned to its equilibrium position at the time interval when its 
transient displacement response to vibration was less than 0.1mm. This value was selected as displacement 
values less than this were considered to have negligible effects on the structure. Although for the equivalent 
friction damped case, the transient response envelope was used to determine when the structure would come 
to rest in free vibration.  

The analysis considered assumed viscous damping ratios between 3-6%, a common assumption range for 
damping in structures. 

It was found that the viscous damping ratio and friction coefficient values that achieved similar displacement 
responses from the model, the transient responses coming to rest at either the same or very similar times, 
were essentially equal. The values considered can be seen Table 2 below. 

Table 2: Viscous damping ratio and equivalent friction coefficient values that caused the model’s transient 
response to come to rest at similar time intervals. 

ξ 0.03 0.035 0.04 0.045 0.05 0.055 0.06 

µ 3% 3.5% 4% 4.5% 5% 5.5% 6% 

The time and displacement values of the points that were considered as the model’s rest position are given in 
Table 3. The absolute differences between the displacement and time values of the viscous damped (VD) and 
equivalent friction damped (EFD) cases at the halting points are also shown, calculated as 

|𝒙𝒙𝑽𝑽𝑫𝑫 − 𝒙𝒙𝑬𝑬𝑭𝑭𝑫𝑫| 
(26) 

Note that the transient response halting points have all less than 0.1mm difference between the two damping 
cases. The largest difference between the transient response values is for 𝜉𝜉 = 5% and 𝜇𝜇 = 0.05, at 0.084mm. 
These differences are illustrated by Figure 19. 
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Table 3: Displacement and time coordinates of the transient (Figure 18), steady-state and total displacement 
responses at the chosen halting points. The differences between the two damping cases’ values are indicated. 

Damping 
Ratio 

Friction 
Coefficient Transient Response at “end” Time at “end” 

ξ μ 
Viscous 

Damping 

Equivalent 
Friction 

Damping 
Difference Viscous 

Damping 

Equivalent 
Friction 

Damping 
Difference 

Displacement 𝒖𝒖𝒕𝒕𝒖𝒖(𝒕𝒕) [mm] Time t [s] 

3 0.03 -0.011 -0.006 0.005 2.010 2.026 0.016 

3.5 0.035 0.048 0.006 0.042 1.741 1.736 0.005 

4 0.04 -0.027 0.026 0.053 1.519 1.519 0.000 

4.5 0.045 -0.008 0.040 0.048 1.349 1.349 0.000 

5 0.05 -0.043 -0.054 0.011 1.209 1.214 0.005 

5.5 0.055 -0.024 0.060 0.084 1.106 1.106 0.000 

6 0.06 0.014 0.065 0.051 1.013 1.013 0.000 

Damping 
Ratio 

Friction 
Coefficient Steady State Response at “end” Time at “end” 

ξ μ 
Viscous 

Damping 

Equivalent 
Friction 

Damping 
Difference Viscous 

Damping 

Equivalent 
Friction 

Damping 
Difference 

Displacement  𝒖𝒖𝒄𝒄𝒄𝒄(𝒕𝒕) [mm] Time t [s] 

3 0.03 0.637 0.796 0.159 2.010 2.026 0.016 

3.5 0.035 -0.072 0.006 0.078 1.741 1.736 0.005 

4 0.04 0.696 0.484 0.212 1.519 1.519 0.000 

4.5 0.045 0.629 0.337 0.293 1.349 1.349 0.000 

5 0.05 0.714 0.983 0.269 1.209 1.214 0.005 

5.5 0.055 -0.739 -0.983 0.244 1.106 1.106 0.000 

6 0.06 0.532 0.231 0.301 1.013 1.013 0.000 

Damping 
Ratio 

Friction 
Coefficient Total Displacement Response at “end” Time at “end” 

ξ μ 
Viscous 

Damping 

Equivalent 
Friction 

Damping 
Difference Viscous 

Damping 

Equivalent 
Friction 

Damping 
Difference 

Displacement  𝒖𝒖(𝒕𝒕) [mm] Time t [s] 

3 0.03 0.626 0.790 0.164 2.010 2.026 0.016 

3.5 0.035 -0.024 0.012 0.036 1.741 1.736 0.005 

4 0.04 0.669 0.510 0.159 1.519 1.519 0.000 

4.5 0.045 0.621 0.377 0.245 1.349 1.349 0.000 

5 0.05 0.671 0.929 0.258 1.209 1.214 0.005 

5.5 0.055 -0.763 -0.924 0.160 1.106 1.106 0.000 

6 0.06 0.545 0.296 0.249 1.013 1.013 0.000 
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Figure 19: Illustration of the differences between the transient response halting point displacements for the 
different damping values 

Although the differences in displacement values shown in Figure 19 look quite large, they are negligible, 
none greater than 0.09mm. 

3.3 Possible relationship ξ-μ  

 

Figure 20: Illustration of a possible viscous damping ratio - friction coefficient relationship 

The results of the analysis show that, for this model, there seems to be a linear relationship between the 
friction coefficient and viscous damping ratio. Figure 20 plots the damping values that yielded similar 
responses from the model, showing a linear relationship. 
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4 DISCUSSION 
This paper attempted to establish a mathematical relationship between a viscously damped SDOF system, 
and a friction damped one. The physical model was chosen to represent a typical single-storey structure with 
realistic parameters.  

A theoretical snap-back test was imposed on the model as well as a harmonic excitation force, although the 
transient vibration response of the model was chiefly considered. 

Different values for the friction coefficient and viscous damping ratios were used, keeping those that resulted 
in similar transient responses from the system. Responses were deemed similar if they reached their 
equilibrium points at similar time intervals. The equilibrium point was chosen to be when the transient 
displacement was less than 0.1mm, which the paper considered as a negligible displacement value in the 
context of structures. 

Ultimately this resulted in a linear relationship between the assumed viscous damping ratios and friction 
coefficients for the selected cases that exhibited similar response.  

This paper began with the premise that the common assumption in practice, of a structure having inherent 
linear viscous damping, was not always correct. This would especially be true in structures with large friction 
damping forces present, stemming from sources such as seismic friction devices and slip-friction joints in 
steel members. 

This assumption of linear viscous damping is typically made to simplify the calculations instead of using the 
complicated classical non-linear Coulomb damping. This paper attempted to study the possibility of reducing 
this complexity by using the alternative method of approximating the friction damping by a harmonic force, 
proposed by Rizcallah (2019).  

The paper expanded the application of this method, deriving displacement, velocity and acceleration 
response expressions for this alternative approach to friction damping. These expressions were subsequently 
used in the analysis of the SDOF system when friction damped. 

The resulting linear relationship between ξ and µ for the studied SDOF cases implies that the assumption of 
linear viscous damping in a system may possibly be valid and producing similar results to that of a friction 
damped system for the studied cases. However, the future analysis should be expanded to consider classical 
non-linear Coulomb damping and more cases including MDOF systems and different loading conditions. 
The criteria for which the system’s responses in different damping cases are deemed similar should also be 
re-evaluated with requirements that are more precise in practice. 

The purpose of trying to relate the viscous damping ratio and friction coefficient is so that the design and 
modelling of structures with seismic friction dampers and/or friction forces in structural connections can be 
done more accurately. Whereas currently the specifics of how accurately seismic design software 
mathematically models friction damped software is unknown. 
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