

Retaining Wall Design - SESOC

G. Bird

SESOC Management Committee, & Senior Associate with Beca, Auckland

A. McPherson

Maxx Information Systems, Wellington, & SESOC Software Support

ABSTRACT

In the absence of a recognised or accepted national standard, and in order to provide clarity around the technical basis for their retaining wall software, some time ago SESOC embarked on the development of two design guides for these, namely the:

- Cantilever Timber Pole Wall Design Guide, and the
- Concrete Retaining Wall Design Guide.

The goal was for a consolidated and coherent methodology for static/gravity design, covering a range of common scenarios, including water table, sloped walls, retained slope, pole spacing effects, shear key, etc – as well as a clear and consistent set of load factors.

In addition to static design, dynamic aspects also must be handled, with a number of challenges in order to present a methodology which is both robust as well as suitable for use by the typical structural practitioner. This presentation will (briefly) cover these design guides.

1 INTRODUCTION

1.1 Software Origins

It was by happenstance, back in the 1990s, that SESOC became involved in software, as a result of the considerable enthusiasm of one of our early members, Esli Forrest. He initially developed the Soils program, later followed by further work.

Upon taking responsibility for the SESOC Software portfolio circa 2010, it was the first author's particular question and concern regarding the SESOC Soils program – "What is the Technical Basis ?", that has prompted this initiative and design guides, and as a result now, this introductory conference paper.

This paper can, of necessity, merely introduce some of the basic concepts underpinning the two design guides, which each run to 50 pages plus. And so, the following pages are intended to provide an insight to the scope, methodology, and some of the challenges, using snips from the original design guides, etc.

Also, in many cases, these may be partial extracts from the much more extensive content of the design guides. And so, for expediency reasons, the reader is asked to overlook the '...' or "etc' when just some of the key points are presented herein.

1.2 Background

Retaining :

•

•

The Soils program provides three main areas of capability, with sub-categories under each of these, as follows :

- Shallow Foundations : Pad footings, Strip footings
 - Deep Foundations : Piles (free and restrained head)
 - Cantilever Pole retaining walls
 - Reinforced Concrete retaining walls

The program is broadly based on B1/VM4, though of necessity implementing a number of aspects beyond that document.

While the technical basis is well established and documented for the piles and footings, arguably this is less so for the retaining walls design aspect, particularly for a pseudo-static structural mechanics approach.

In particular, the absence of a national standard or widely accepted industry guideline, or even substantive worked examples (ie covering the considerable range of design variations encountered in practice) – as well as an apparent diversity of approach in the Geotech space, left SESOC in the unenviable position of having provided some software without a robust and documented technical basis.

Further to discussion with various people from the Geotech fraternity, it became evident that a national standard and/or guideline was unlikely in a reasonable timeframe.

With respect and acknowledgement to the two (relatively recent) MBIE retaining wall design examples, as well as various national seminars by the late Mick Pender, Brabha Pathmanathan, Kevin McManus, et al, we observe the multiplicity of combinations and permutations of soil type, static and dynamic loading, water table level, vertical or sloped wall, horizontal or sloping retained slope, virtual back of wall, front of wall slope, etc, many of which have not been adequately addressed, if at all.

And so, several years ago now, SESOC embarked on a journey to prepare documentation to serve as a technical basis for the software, with - in hindsight, little knowledge of the effort this would take.

1.3 Scope

It must be noted that the two design guides have been prepared, primarily, as a robust technical basis for the software.

In this regard, we have intentionally constrained the scope to what a competent structural engineer 'should' be able to reasonably undertake – with suitable Geotech input as appropriate.

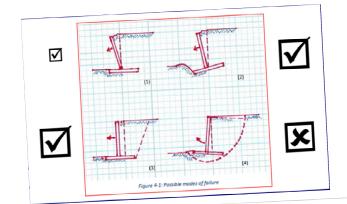
In other words, we've sought to cover the majority of low rise, 'garden variety' retaining walls, with the higher, or more complex, or tied back, or displacement sensitive type structures to be handled by a professional Geotech practitioner.

1.4 Assumptions & Limitations

There are a number of assumptions and limitations which underpin both guides. Some of the key aspects are provided below :

Fundamental Assumptions

- Granular backfill •
- Simple cantilever
- Not displacement sensitive •


Geotech assumptions:

- Triangular pressure distribution •
- Soil & pore water are homogenous

. . . .

- Geometry :
- ≤ 3.0 m height •
- Pole spacing $\leq 6D$ [CTP]
- Slope distance limits

Outside these .. you need to engage a Geotech ..

In many retaining wall situations, there may be geotechnical issues present for which the Structural

Engineer should seek the advice of a Geotechnical Engineer. Such geotechnical issues include, but

are not limited to, the following: Global geotechnical instability Defects or discontinuities in the soil or rock matrix • Changes in effective strength due to earthworks • Groundwater Liquefaction potential Undesirable levels of wall deflection, both in the static and seismic load case scenarios Undesirable levels of wider ground movement, both in the static and seismic load case scenarios Partial extracts from The impact of any ground movements on neighbouring properties, buildings, roads or buried the relevant content : Constructability of the wall type in the given ground conditions, and/or, Confirmation of the safest construction sequence(s) to manage health and safety risks In summary, the structural engineer must ensure they are not operating beyond the bounds of their competence, and seek professional geotechnical advice as appropriate. For the purposes of this document Geotechnical Engineer shall mean a Chartered Professional Engineer and/or Professional Engineering Geologist, as appropriate, who is appropriately qualified, experienced and specifically assessed by Engineering New Zealand as specialising in the Geotechnical All readers of this document are reminded that in New Zealand a significant proportion of practice area. engineering consultancy professional indemnity insurance claims relate to the geotechnical inadequacy or failure of retaining wall systems and/or the wider site, and such failures usually feature Structural Engineers practising outside their field of expertise and/or level of geotechnical

Seeking advice from Geotechnical Engineer

1.5 Editorial Basis

These guides are, intended, in effect as "Retaining Wall Design for Structural Engineers", written for structural engineers .. by structural engineers .. but with Geotech input.

competence.

The **Design philosophy** is based on Static pressure blocks (i.e a structural mechanics approach) using LFRD but optionally with F.o.S

The methodology includes a wide range of variations as encountered in 'typical' retaining wall design

Including :

- Soil types : cohesive & cohesionless
- Loading : static + seismic
- Water table : none, at GL, or above GL
- Retaining wall : vertical or sloped
- Retained soil : horizontal or sloped
- Full design methodology
- CTP : pole spacing effects
- RCW : virtual back of wall
- RCW : positional effect of key

But Excluding :

- Construction detailing
- Displacement sensitive structures
- Displacement calcs
- Etc

1.6 Analysis Basis vs Soil Classification and Loading

The following table (extract) shows the interaction between the soil type and loading conditions, and how this affects the calculation process.

Founding Soil Type	Loading	Analysis Type	Strength Parameter		
Cohesive	Static, long-term	Drained	φ', c'		
Cohesive	Seismic, short-term high live load	Undrained	Su		
Cohesionless	Static, long-term	Drained	ф'		
Cohesionless	Seismic, short-term	Drained	φ'		

Or, to present in another way, the analysis type is determined by the loading scenario plus the founding soil type:

	Analysis Type for:			
Loading	Cohesive Founding Soil	Cohesionless Founding So Drained		
Long-term	Drained			
Seismic/short-term	Undrained	Drained		

1.7 Soil Pressure

We have sought to present a single, coherent, soils model, conservative (but not too conservative), across a range of parameters with, ideally, a 'closed form solution' for implementation in the software. Ideally, also, a model that will readily accommodate vertical as well as sloping retaining systems, plus horizontal as well as sloping retained sites, with or without surcharge loading, and compatible with the seismic model.

In general, (with particular and significant input by the last named contributor in the acknowledgements), we have landed on the following :

- Active pressure : Ka is calculated using Coulomb's failure wedge approach, adjusted for wall friction and non-horizontal backfill and non-vertical soil-wall interface. Kae is calculated based on Mononobe-Okabe theory
- Passive pressure : K_P and K_{Pe} values are based on the closed-form 'stress plasticity' formulation by Mylonakis et al 2007 [1].

1.8 Load Factors

Within industry there appears to be a multiplicity of load factors used, as per the analysis of various documents below, which we have sought to consolidate in to a single coherent whole.

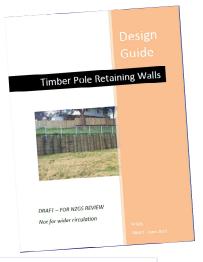
B.4 Comparison and discussion

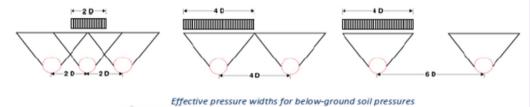
The following represents a summary of work kindly undertaken by John Wood for SESOC. In particular, we wanted to benchmark and align our methodology with several 'industry' examples.

Unsurprisingly, we found some variation of approach and results. Of more concern, however, was the sometimes-significant variation between a 'factor of safety' (working stress) and factored (ultimate) designs – for the same basic problem.

John undertook a study of commonly used codes, guidelines and examples, followed by preparation of a recommended consistent set of design factors. This information is summarised in the table below.

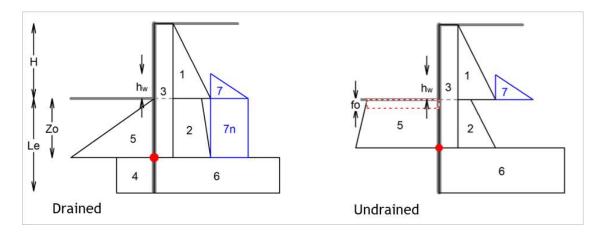
	Active	Earth	Dead	Live	Drained	Undrained Reduction Factor	Effective FoS (No LL)	
Code	earth pressure α _a	pressure from super- imposed α _q	Load Factor ²	Load Factor ²	Reduction Factor		Drained	Undrained
Pender 2000							2.0	
MBIE Example Gravity						2 2	1.5	1.5
MBIE Example Seismic					,		1.0	1.0
Hong-Kong Guidelines			1.0	1.5	0.83	0.5	1.2	2.0
AS 4678: Wall Category B			1.25	1.5	0.9	0.5	1.4	2.5
EN 1998-5:2004		10 0		0	0.8	0.71		0.
CIRIA C580		16 0	1.35	1.35	0.83	0.67	1.6	2.0
B1/VM4 Gravity/Sliding	1.6	1.6		0	0.8	0.8	2.0	2.0
B1/VM4 EQ/Sliding	1.0	1.0		s	0.8	0.8	1.3	1.3
B1/VM4 Gravity/Bearing ¹	1.6	1.6			0.45	0.45	3.6	3.6
B1/VM4 EQ/Bearing1	1.0	10			0.45	0.45	2.2	2.2
SESOC Recommended Gravity	1.4				0.5	0.6	1.75	2.33
SESOC Recommended EQ	1.0				0.9	0.8	1.11	1.25
SESOC Recommended Gravity		1.3	1.2	1.5	0.8	0.6	1.95	2.6
SESOC Recommended EQ		1.0	1.0	0.4	0.9	0.8	1.11	1.25


Extract from the Appendices of the CTP Design Guide


2 CTP: CANTILEVER TIMBER POLE WALL

The following is some brief commentary along with a number of graphics outlining some of the key points in terms of the technical basis of the guide.

2.1 Pole Spacing Effect

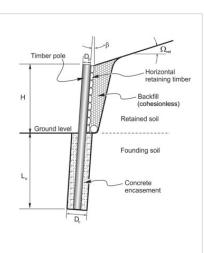

- Simplified approach
- Above ground: full contributory area between poles transferred to pole
- Below ground soil: assumes a maximum effective pressure width of 4D_c i.e. EFW = MIN[Sp, 4D_c]
- Below ground water: based simply on the width of the pole D_c

2.2 Pressure Blocks :

- Embedded pole rotates about point Zo below ground
- 1, 2: active pressure due to retained soil
- 3: active pressure due to superimposed loading
- 4: active pressure occurring due to pole rotation
- 5, 6: passive pressure resisting rotation

Sample structural mechanics pressure block diagram from the CTP guide.

2.3 Water Table


Effect of water table

- Huge impact, even if water table at ground level
 - Direct pressure from water p7
 - Buoyancy adjustment to p1 (backfill active pressure)
 - Additional active pressure from water below ground (drained analysis)

2.4 Composite Action :

Composite action of concrete-encased pole

- Design guide allows for a composite strength increase factor, Cc, if pole is concrete-encased
- Equals the ratio between the design flexural strength of the composite pole and that of the bare pole
- Requires specific evaluation by engineer
- Strongly recommend set Cc = 1.0
- Only exception may be when the design engineer has undertaken an appropriate risk analysis, including consideration of relevant 'decision factors', and is confident that an increased Cc is justified

F2

F6

2.5 Design Guidance :

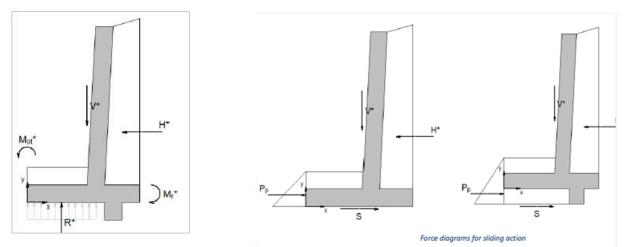
In addition to the technical background, and (hopefully) gradual immersion of the reader from broad concepts progressively leading on to more and more technical detail, the CTP also provides detailed and explicit formulation of all the calculations of design actions and pressures, through to the ultimate calculation of forces, moments and the crucial stability checks.

lowi	x D - Calculation of desi ng equations are formulated expl noted, by substituting the relevan	licitly for non-selsr at pressure coeffici	nic load o ients, Zo,	ases. However unless Lemin, and load and capacity						
ction f	actors they equally apply for:		D.2 Dr	iving and restoring mom	ents about Zo					
	ttic or setsmic loading alned or undrained analysis,		Block	Description	Equation					
 Grained of distances er Figure 7-1, and Figure 7-3 to Figure 7-5 for block num 			Unfact	ored driving moments per pole		1				
ations				Total driving moment	$M^*d = (M_1 - \Delta M_1 + M_2 + M_3)$	1.0	D.3 C	ieck equilibrium e	quations	
1 Pressure forces on wall			(factored)		+ (M ₂ + M _{2n}) * α _w (draine		Block	Description		
- 1	Equation				$M^*d_u = (M_1 - \Delta M_1 + M_2) * \alpha_e$				Equation	
Infactored driving forces per pole (active pressures)				(undrained)			Horizont La	Dole (factored active forces + dependable resisting forces)		
nfacto		F1 = 1/2 P16 * H *		where:				Horizontal force equili	ibrium $(F_1 - \Delta F_1 + F_2 - F_4) + \alpha + \alpha$	
	Force from back of wall	-ΔF1 = -%ΔP16	1	Moment from back of wall	$M_1 = F_1^* (H/3 + Z_0)$				$= (F_5 - \Delta F_{5c} - F_6) + \Phi_p \text{ (drained)} + \alpha_q + (F_7 + F_{2n}) + \alpha_q$	
	retained soil pressure			retained soil pressure	$-\Delta M_1 = -\Delta F_1 + (h_w/3 + Zo)$	(bu			$ \begin{array}{l} (F_1 - \Delta F_1 + \Gamma_{2u})^* \alpha_0 + (F_{1u} + F_{2u})^* \alpha_0 + F_7^* \alpha_w \\ = (F_{5u} - \Delta F_{5u} - F_{5u})^* \Phi_\mu \text{ (undrained)} \end{array} $	
2	Force from back of wall	$F_2 = \frac{1}{2}(p_{20} + p_2)$	2	Moment from back of wall	M ₂ = F _{2A} * Zo/3 + F ₂₈ * Zo/					
f	founding soil pressure	Equivalently, $F_{24} = 1$ $F_{2y} = \frac{1}{2} (p_{2yy} + 1)^2$		foundation pressure			Moments about Zo per pole (factored dei 1			
			3	Moment from surcharge	$M_{2A} = F_{3A} * (H/2 + Zo)$			ents about Zo per pole (factored driving moments + dependable restoring n		
		F14 = p3 * H *			M ₃₈ = F ₃₈ * Zo/2				M*d - M*r	
3	Force from surcharge	F ₃₄ = p ₃ * 70 F ₃₈ = p ₃ * ZO	4	Moment from soil pressure	$M_4 = F_4 * (Le_{min} - Zo)/2$ (de	a 0.	4 Calci	late design action	s on pole	
			below Zo		La	uiate sr	ear and bending momen	s on pole st at ground level, and maximum moment below ground level		
4	Force from soil pressure	F4 = p4 * (Le, 7, 7n	7n Moment from water pressure	$M_7 = F_7 * (h_w/3 + Z_0)$	BR	ock D	escription	Equation		
	below Zo	F ₂ = ½p ₂ * h			M _{2n} = F _{2n} * Zo/2 (drained	Sh	tar and I	Moment at ground level	Per pole	
7,70	Force from water pressure	$F_7 = 34p_7 + 74$ $F_{7n} = p_7 + Z_0$					To	tal shear at ground level		
		P7n = 107 - 20	Unfact	ored restoring moments per pole	5		(fa	(tored)	$V^{*}p = (F_{1} - \Delta P_{1})^{*} \alpha_{a} + F_{3A}^{*} \alpha_{a} + F_{7}^{*} \alpha_{w}$	
F	actored restoring forces per pole	(passive pressu		Total restoring moment	$M^*r = (M_s - \Delta M_{s_s} + M_s)^*$		Tot	al moment at ground	M'D = (E, t H/2	
Unf				(dependable)	$M^*r_a = (M_{Sa} - \Delta M_{Sa} + M_{Sa})$		leve	(factored)	$M^{*}p = [F_{1} * H/3 - \Delta F_{1} * h_{n}/3] * \alpha_{n}$ + $F_{AA} * H/2 * \alpha_{0} + F_{2} * h_{n}/3 * \alpha_{m}$	
	Passive pressure above Zo:	Fe = ½Dsh		where:						
		Drained, conesionless.		Control Contro	C		Depth where shear is zero (poin		nt of maximum bending moment below ground level)	
	Drained, cohesive:	-ΔFc = -	5	Moment from passive pressure above Zo			Total	factored shear (= 0 at	his bending moment below ground level)	
		$F_{5u} = \frac{1}{2}(p_0)$		Drained, cohesionless:	M ₅ = F ₅ * Zo/3 (drained		posit	on of maximum bending	$V^{*}pc = (V_{22} + V_{22})^{*} \alpha_{a} + V_{32}^{*} \alpha_{q} + (V_{22} + V_{2n2})^{*} \alpha_{a}$ $V_{3n}^{*} \Phi_{p} (drained)$	
	Undrained (cohesive):		and the second sec	Msc = FscA * Zo/3 + Fsc8		moment)		$V^* pc_{\mu} = (V_{2_2} + V_{2_{2_2}})^* \alpha_{\nu} + V_{3_1}^* \alpha_{\eta} + V_{7_2}^* \alpha_{w} - V_{5_{2_2}}^* \alpha_{\mu}$ (undrained)		
	Undrained (cohesive):	$F_{5u} = \frac{V_5}{\Delta} F_{5u} = 0$		Drained, cohesive:			1		fundation in the TVN " ag + V2 * a - Ve * th	
		-∆Fsu =			-ΔM _{Ec} = -ΔF _{Ec} * (Zo -				(unurained)	
6	Undrained (cohesive): Force from passive pressubelow Zo	-∆Fsu =		Drained, cohesive: Undrained (cohesive):	-ΔΜ _{5c} = -ΔF _{5c} * (Zo - M _{5c} = F _{5c} * Zo/3 + F _{5cf}		where		(vindrained)	
6	Force from passive pressu	$-\Delta F_{S_0} =$ ine $F_6 = p_6 * ($		Undrained (cohesive):	$-\Delta M_{E_{x}} = -\Delta F_{E_{x}} * (Zo - M_{E_{x}} = F_{Suk} * Zo/3 + F_{Suk} - \Delta M_{Su} = -\Delta F_{Su} * (Zo - M_{Su} = -\Delta F_{Su} * (Zo - M_{Su}) - \Delta M_{Su} = -\Delta F_{Su} * (Zo - M_{Su}) - \Delta M_{Su} = -\Delta F_{Su} * (Zo - M_{Su}) - \Delta M_{Su} = -\Delta F_{Su} * (Zo - M_{Su}) - \Delta M_{Su} = -\Delta F_{Su} + (Zo - M_$		Depth	to zero shear		
6	Force from passive pressu	$-\Delta F_{S_0} =$ ine $F_6 = p_6 * ($	6		-ΔΜ _{5c} = -ΔF _{5c} * (Zo - M _{5c} = F _{5c} * Zo/3 + F _{5cf}		Depth Shear f		hterating to find Zbm: $V_{ii} = F_i - \Delta F_1$	

3 RCW: REINFORCED CONCRETE WALL

3.1 Introduction

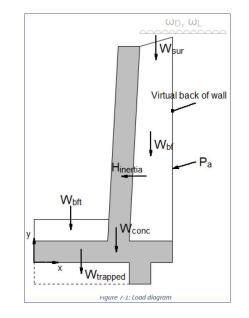
There are basically two (local) fundamental limit states :


- Overturning
- Sliding

And, typically, at least two load cases :

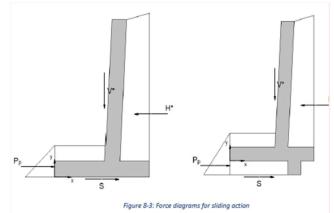
- Static (gravity)
- Dynamic (seismic)

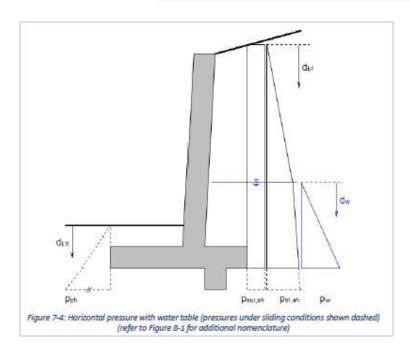
.. with the following pseudo-static structural mechanics loads & pressure blocks



3.2 Further Details

However, behind these is a multiplicity of details, e.g.


- Drained vs undrained
- Active, passive, & seismic pressures
- Water table
 - Static / long term
 - Seismic / hydro-dynamic
- Shear key
 - Positional benefits
 - Pressures
- Virtual back-of-wall
 - Limitations of use ?
- Surcharge loading
 - stabilising effects



Including consideration regarding which components are providing stabilising actions, and which destabilising ? and the appropriate load factors for each, and which aspects we can (reasonably) ignore ?

This includes complexities around:

- Pressures and forces for sliding versus overturning, with and without key
- Water table pressures, especially in the vicinity of the footing
- etc

4 STATUS & ACKNOWLEDGEMENTS

Status: As at the time of writing (early Apr 2022), both documents are in draft format, and are with NZGS for formal review. We have received initial, positive feedback from the NZGS management committee, and the CTP design guide is now undergoing a detailed review by some experienced and senior Geotech practitioners.

Acknowledgements: Although numerous people from industry have provided valuable input at various times, particular acknowledgement must also be made to the following parties :

- Beca, for the first author's (unfunded) time and contribution, which has been quite substantial, and over several years
- My co-author, Allan McPherson, for his diligent efforts as the writer and pen-holder, as well as meticulous attention to detail

And last but not least :

• John Wood, for substantial input, as well as detailed review of these documents, and whose considered and thoughtful contributions have substantially strengthened and truly enhanced the quality of this initiative.

In parallel with the above NZGS review, SESOC have commissioned a University of Auckland PhD student to undertake a representative series of analytical models, in order to benchmark the proposed basic methodology – as well as the various combinations and permutations.

These are being carried out quite independently, yet following, as much as possible the philosophy espoused in the SESOC Design Guides – which, in turn, seek to also consolidate the various industry sources (from B1/VM4 and Mick Pender's Geotech 2000 series onwards) in to a single cohesive whole.

5 CONCLUSION

This paper provides a brief insight into the development process and current status of these two cantilever retaining wall design guides.

Although a process we would have preferred to be undertaken by others, in the absence of any form of national standard or similar, or timely expectation of such, SESOC felt it could no longer provide software without a robust and documented design methodology, hence the undertaking of these guides.

It is our hope that these guides will underpin future retaining wall work, in the wider sense, yet noting that the scope is deliberately restricted to 'residential', 'garden wall' type work. Very intentionally, the scope is limited to what a competent structural design professional 'should' be able to design (– with Geotech input as appropriate), and acknowledgement of the need of experienced Geotech professionals to undertake the broader spectrum of retaining walls - larger, tied back, more complex, stepped, etc.

6 **REFERENCES**

[1] Mylonakis, George & Kloukinas, Panos & Papantonopoulos, Costas. (2007). An alternative to the Mononobe–Okabe equation for seismic earth pressures. Soil Dynamics and Earthquake Engineering, 27. 957-969