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ABSTRACT 

An elemental damping model has recently been proposed as an alternative to the Rayleigh damping 

model to avoid spurious damping forces during inelastic seismic response.  It has shown great 

potential because it has the same computational efficiency as the Rayleigh model and could better 

relate damping to elemental deformations.  Unfortunately, it has some significant problems.  The 

relationship between elemental and global damping ratios is implicit and peculiar, resulting in 

difficulty for model parameter calibration.  The resultant damping matrix is not classical even if all 

elemental damping matrices are, causing coupling between global modes with an effect much 

higher than anticipated.  These problems are believed to be caused by the conventional direct 

assembly method used to assemble elemental damping matrices.  This study proposes a more 

consistent assembly method for assembling elemental damping matrices.  The proposed method not 

only has the advantage of overcoming the above problems but also opens up an opportunity for 

broader theories that relate damping ratio to internal material state variables, particularly during 

inelastic response.  Examples are used to showcase the performance of the proposed assembly 

method. 

1 INTRODUCTION 

In the numerical simulations of seismic response of large-scale structures, the Rayleigh damping model, due 

to its simplicity and computational efficiency, is often used to incorporate un-modelled energy dissipation.  

However, since the work by Chrisp (1980) and Carr (1997), it has been proved to result in unacceptable 

spurious damping forces and moments during inelastic response with an order of magnitude comparable to 

member forces and moments. 

In addressing the issue of spurious damping forces of the Rayleigh model, an elemental damping model has 

recently been proposed as an alternative (Puthanpurayil et al., 2016; Carr et al., 2017).  In this model, 

elemental damping matrices are formulated based on elemental mass and stiffness matrices.  The global 

damping matrix is obtained by assembling all elemental damping matrices based on the common nodal 

degrees of freedom.  This model has received attention because it shows great potential in better relating 

damping forces to element deformations and allows analysts to assign different damping ratios from element 

to element.  They are particularly computationally efficient because the resultant global damping matrix is as 

sparse as the global stiffness matrix. 
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Unfortunately, the elemental damping model comes with two significant problems: 1) The calibration of 

elemental damping ratios against desired global damping ratios is difficult, and the relationship between the 

two damping ratios appears to be peculiar.  For a global damping ratio as low as 5%, the required elemental 

damping ratio could exceed 100% or even be negative.  The physical meaning of the elemental damping ratio 

is lost.  2) The resultant damping matrix is not classical, causing coupling between modes with an effect 

much higher than anticipated.  The interaction between higher and lower mode responses would result in 

spurious damping moments.  It defeats the purpose of using the elemental damping model. 

The main reason for the above problems is the conventional assembly method used to assemble elemental 

damping matrices for a global damping matrix.  This study proposes a more consistent method for 

assembling elemental damping matrices.  The proposed method is based on the recently proposed bell-

shaped proportional damping model (Lee, 2019a, 2019b, 2020a, 2020b, 2020c, 2021, 2022; Lee and Chang, 

2022, 2023).  This new method not only has the advantage of overcoming the above problems but also opens 

up an opportunity for broader theories that relate damping ratio to internal material state variables, 

particularly during inelastic response.  Examples will be used to showcase the performance of the proposed 

assembly method. 

2 ASSEMBLY METHODS 

2.1 Conventional direct assembly method 

The conventional direct assembly method was proposed by Puthanpurayil et al. (2016) to assemble elemental 

damping matrices 𝒄 for the global damping matrix 𝑪, as defined below 𝑪 = ⋃ 𝒄𝑒  (1) 

where ⋃ is the assembly operator that combines elemental damping matrices with each element labelled by e 

and is the standard procedure that assembles elemental stiffness matrices k for the global stiffness matrix K 

based on the common nodal degrees of freedom shared by the elements.  The matrix 𝒄 is formulated using 

the elemental mass matrix 𝒎 and the stiffness matrix k.  The formulation of 𝒄 is based on the Rayleigh 

model, the Caughey model, or the Wilson-Penzien modal damping model.  The model parameter values are 

often calibrated based on user-specified elemental damping ratios. 

This assembly method is intuitive but problematic, as discussed in the following: 

 Using Equation 1 to obtain 𝑪 from 𝒄 would not conserve the elemental damping ratio on the global 

structural level, such that the global damping ratio is not equal to the elemental damping ratio.  As 

reported previously (Ni et al., 2019), the global damping ratio is often significantly lower than the 

elemental damping ratio.  For matching a global damping ratio of 5%, the required elemental damping 

ratio could sometimes be way higher than 100%.  Such an elemental damping ratio is questionable. 

 The relationship between the elemental damping ratio and the global damping ratio is implicit and would 

change from structure to structure.  Some discussions have been presented on how the elemental 

damping ratios might be calibrated for a desired global damping ratio (Puthanpurayil et al., 2016; Ni et 

al., 2019; Clemett et al., 2020).  However, these calibration methods are not rigorous, particularly for an 

irregular structure.  For a general calibration process, a least-squares curve-fitting method on the global 

damping ratio could be considered to calibrate elemental damping ratios.  This method is, nonetheless, 

computationally costly since it requires global mode shapes and natural frequencies to be available.  

They are computationally costly to compute for a sizeable structural model. 

 The matrix 𝑪 obtained using Equation 1 is not classical in general, such that the global vibration modes 

are coupled.  The effects of this coupling could be significant.  The interaction between higher and lower 

modes would result in spurious damping forces and moments, which will be shown in an example later. 
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2.2 Proposed assembly method 

Before the new assembly method is introduced, it should first be noted that the elemental damping matrix 𝒄 

should be formulated based on the recently proposed bell-shaped damping model.  The bell-shaped model 

uses multiple bell-shaped basis functions to generate any desired damping ratio curve in the frequency 

domain, e.g. a uniform, linear, trilinear or stepped distribution.  It is versatile and much more general than the 

Rayleigh, Caughey, and Wilson-Penzien models.  The bell-shaped model has several types of variants for 

formulating 𝒄.  The following discussions are limited to only the fundamental Type 0 bell-shaped model, but 

they could be applied to all other types. 

The matrix 𝒄 using the Type 0 model with one basis function is expressed as follows 𝒄 = 𝒎𝒄 −𝒎𝒄(𝒎𝒄 + 𝒌𝒄)−𝟏𝒎𝒄 (2) 

where 𝒎𝒄 = 4𝜁𝑝𝜔𝑝𝒎 (3) 𝒌𝒄 = (4𝜁𝑝/𝜔𝑝)𝒌 (4) 

The parameters 𝜁𝑝 and 𝜔𝑝 are the coefficients controlling the location and value of the peak of the bell-

shaped basis function in order to match a desired global damping ratio curve in the frequency domain.  More 

information about these parameters is given by Lee (2020a). 

The expression of 𝒄 shown in Equation 2 is not suitable to be assembled for 𝑪.  It needs to be first expanded 

into the following block matrix 𝒄𝒙 by introducing additional intermediate degrees of freedom 𝒄𝒙 = [ 𝒎𝒄 −𝒎𝒄−𝒎𝒄 𝒎𝒄 + 𝒌𝒄] (5) 

In this block matrix, the first row corresponds to the original equations of motion, and the second row 

corresponds to the newly introduced equations that relate a filtering relationship between the original and the 

intermediate degrees of freedom (Lee, 2020b). 

The expression of 𝒄𝒙 is then assembled to form the global matrix 𝑪𝑿, shown as follows 𝑪𝑿 = [ 𝑴𝑪 −𝑴𝑪−𝑴𝑪 𝑴𝑪 +𝑲𝑪] (6) 

where 𝑴𝑪 = ⋃ 𝒎𝒄𝑒  (7) 𝑲𝑪 = ⋃ 𝒌𝒄𝑒  (8) 

Equations 7 and 8 show the key steps for assembling elemental damping.  The final global damping matrix 𝑪 

can be obtained by removing all the intermediate degrees of freedom using static condensation, shown as 

follows 𝑪 = 𝑴𝑪 −𝑴𝑪(𝑴𝑪 +𝑲𝑪)−𝟏𝑴𝑪 (9) 

The above equations also apply to cases with multiple basis functions and all types of the bell-shaped model. 

A few remarks can be made on this new assembly method: 

 The expressions of 𝑪 and 𝒄 are similar in form.  Therefore, the elemental damping ratio is conserved on 

the global structural level, such that the global damping ratio is equal to the elemental damping ratio.  No 

complicated calibration of the elemental damping ratio is needed.  It is valid for all types of structures. 
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 The matrix 𝑪 remains classical so that all global modes are uncoupled if all elements have the same 

damping ratio.  There will be no interaction between modes.  No spurious damping forces and moments 

during inelastic response will result. 

 The damping parameter 𝜁𝑝 can be different from element to element, allowing elemental damping ratios 

to differ from element to element.  It facilitates modelling a structure made of different types of 

elements, particularly for a structure with its foundation and soil included in the model for soil-structure 

interaction analysis.  Elemental damping ratios can also be assigned to elements without mass inertia and 

lumped mass elements without stiffness.  This flexibility is not allowed in the conventional method. 

 The elemental damping ratio no longer needs to be affiliated with elemental mass and stiffness.  It can be 

a function of internal state variables of elements or materials, e.g. plastic strain, damage, or crack.  This 

assembly method facilitates a broader damping theory (Heitz et al., 2019; Chambreuil et al., 2021; Shen 

et al., 2021, 2022, 2023). 

 In computer implementation, the explicit forms of 𝑪 and 𝒄 shown in Equations 2 and 9 are unnecessary.  

Only Equations 6 through 8 are used for high computational efficiency (Lee 2020b). 

3 EVALUATION IN RESPONSE HISTORY ANALYSIS 

The performance of the proposed assembly method compared to the conventional method is evaluated in a 

response history analysis of a single-bay ten-storey steel moment frame with a bay width of 6 m and a 

uniform storey height of 3.5 m.  The column and beam sections are W14x193 and W21x68, respectively.  

The floor weight for horizontal and vertical motions are 50 kN/m and 6.25 kN/m, respectively, and are 

modelled as beam density in a consistent mass matrix.  The first ten shear-mode natural frequencies are 

0.442 Hz, 1.40 Hz, 2.58 Hz, 4.00 Hz, 5.73 Hz, 7.75 Hz, 10.0 Hz, 12.3 Hz, 14.3 Hz, and 15.8 Hz.  The 

structure is linear and elastic.  The elemental damping model is not yet developed for inelastic structures.  A 

linear elastic analysis is sufficient to show the different performances between the two methods. 

The structure is assumed to have 5% damping for all the global modes.  In the conventional method, the 

modal damping coefficients of the beams and columns are computed using the least-squares curve-fitting 

method to fit the damping ratios of the first ten modes.  All the beams have the same damping, while all the 

columns have the same damping.  Nevertheless, the matrix 𝒄 for the beams can be different from that of the 

columns.  With six modes (three rigid body modes and three deformation modes) in each element, there are 

twelve free variables (modal damping coefficients) for the curve-fitting.  It is often believed that no damping 

force should resist rigid body motions.  Therefore, two options of free variables are considered for the curve-

fitting: 1) with rigid body modes (RBM) included, 2) with no RBM.  In the proposed method, six Type 0 

basis functions are used to generate the uniform 5% damping.  The same values of 𝜁𝑝 and 𝜔𝑝 are assigned to 

both beams and columns. 

Figure 1 shows the damping ratios of all the modes using the two methods.  It shows that the conventional 

method with RBM could match the damping ratios of the first ten modes with acceptable accuracy, but not 

the option without RBM, which gives very poor matching for the first mode.  Both these options also give 

very large damping ratios for all the higher modes.  In contrast, the proposed method successfully gives the 

correct 5% damping ratio for all the modes with nearly no discrepancy.  In fact, since all elements have the 

same damping ratio, the bell-shaped model performs like the Wilson-Penzien model with all the modes 

assigned with a 5% damping ratio, as discussed in previous work (Lee, 2020b). 

The input motion is the north-south component of the El Centro earthquake.  The response history analysis is 

conducted using the Newmark method with constant acceleration with a time step of 0.02 sec.  The resultant 

roof drift and base shear time histories are shown in Figure 2, with the time window within the period when 

the motions are large. 
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Figure 1: Damping ratios using conventional and proposed methods 

 

Figure 2: Drift and base shear time histories using conventional and proposed methods 

Figure 2 shows that the conventional method with RBM and the proposed method give nearly the same 

response for the roof drift and the base shear with minor discrepancies because these responses are 

dominated by the lower modes, for which the conventional method with RBM and the proposed method have 

successfully produced a 5% damping.  In contrast, the conventional method without RBM, due to having a 

significantly lower damping ratio for the first mode, gives larger roof drift and base shear.  These results 

show that if the conventional method is used, nonzero modal damping coefficients must be assigned to 

elemental rigid body modes to ensure accurate damping for the lower modes.  However, it will result in 

having unjustifiable damping forces to resist rigid body motions.  If the modal damping coefficients for the 

rigid body modes must be zero, the accuracy of the lower mode damping will be compromised.  It is the 

dilemma of the conventional method. 

The envelopes of the inter-storey drifts and the joint damping moments 𝑀𝑗𝑑 are plotted in Figure 3.  The 

joint damping moments for the left and right columns are identical due to symmetry.  The joint damping 

moments are normalized by the envelopes of the joint member moments 𝑀𝑗0 (based on constitutive material 

response) where no damping is present with 𝑪 = 𝟎.  A separate undamped response with a zero 𝑪 has been 

computed for comparison.  As shown in this figure, the conventional method with RBM and the proposed 

method give a similar envelope for the inter-story drifts.  However, the conventional method without RBM 

gives a larger envelope due to the smaller damping ratio in the first mode.  For the joint damping moments 



Paper 37 – How to assemble elemental damping? 

NZSEE 2023 Annual Conference 

𝑀𝑗𝑑, the proposed method gives an envelope much smaller than the envelope of 𝑀𝑗0.  This result is good 

since the damping effect should be minor compared to the member moments.  On the contrary, the 

conventional method gives a much larger envelope, about 4 to 8 times the envelope of 𝑀𝑗0, when RBM are 

excluded from the curve-fitting.  When RBM are included, the envelope is about the same as the envelope of 𝑀𝑗0, which is still unacceptable.  It is because the conventional method gives a very high damping ratio for 

the higher modes and the coupling effects that result in the interaction between lower and higher modes. 

 

Figure 3: Envelopes of interstorey drifts and joint damping moments using conventional and proposed 

methods 

4 CONCLUSIONS 

This paper has summarised the problems of using the conventional direct assembly method for elemental 

damping models, which include the difficulty of calibration for elemental damping ratios and the unintended 

large coupling effects between global vibration modes.  It has presented a new consistent assembly method 

based on the recently proposed bell-shaped damping model to address the problems.  This new method has 

not only solved all the problems of the conventional method but also extended the use of the elemental 

damping model to a wider application using a broader damping theory that relates elemental damping ratios 

to element or material internal state variables.  An example of response history analysis has been presented to 

show the excellent performance of the proposed method. 
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