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ABSTRACT 

This paper applies machine learning algorithms to investigate the interrelationship between seismic signal 

and rocking demand. Specifically, it employs Artificial Neural Networks (ANN) to predict the rocking 

amplitude and reveal the input variables that contribute the most to the prediction. The paper adopts a variety 

of rocking blocks of different sizes and slenderness, and it employs a suite of recorded earthquakes. The 

analysis assumes that no sliding and bouncing occur during rocking. Furthermore, solely the cases where the 

blocks safely return to their initial rest position after the end of the ground shaking are considered. An ANN 

model is trained to predict the response amplitude and identify the most critical input variables that govern 

safe rocking. The results unveil that the rocking amplitude is governed by a combined consideration of 

duration, frequency, and intensity characteristics of the ground motion. Importantly, a novel intensity 

measure, i.e., maximum incremental velocity, shows a substantial correlation with the rocking amplitude. 

Finally, the coefficient of restitution, which controls the energy dissipation of a rigid block during rocking, is 

found to be less influential to the peak safe rocking response compared to the remaining input variables of 

the rocking problem. 

1 INTRODUCTION 

Rocking is considered an unconventional seismic isolation paradigm as it activates the structural rotational 

inertia to provide seismic stability (Housner 1963). Therefore, it finds application to a variety of structural 

configurations (Vlachakis et al., 2021, Vlachakis et al., 2023, Bachmann et al., 2017, Dimitrakopoulos and 
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Giouvanidis, 2015, Giouvanidis and Dimitrakopoulos, 2017a, Giouvanidis and Dong, 2020, Manzo and 

Vassiliou, 2022, Manzo et al., 2022). However, rocking motion has been shown to be highly nonlinear 

(Giouvanidis et al., 2022) and nonsmooth (Giouvanidis and Dimitrakopoulos, 2017b). Specifically, a rocking 

structure is particularly sensitive to different characteristics of the ground excitation. Psycharis et al. (2013) 

showed the important contribution of the peak ground velocity (PGV) to rocking response, while 

Dimitrakopoulos and Paraskeva (2015) highlighted the contribution of PGV and a combination of the peak 

ground acceleration (PGA) with a frequency characteristic (PGA/PGV) to rocking amplitude. Later, 

Lachanas et al. (2023) verified the importance of PGV and PGA to the overturning mode of slender and 

stocky rocking structures, respectively. Further corroboration of velocity and frequency characteristics as 

optimal intensity measures (IMs) came from Pappas et al. (2017), Kavvadias et al. (2017), and Sieber et al. 

(2023). Recently, Giouvanidis and Dimitrakopoulos (2018) revealed the remarkable contribution of duration 

characteristics, i.e., the uniform duration tuni and cumulative absolute velocity of exceedance CAVexc, to the 

rocking amplitude. 

A limitation of the above studies is the consideration of either scalar or bivariate IMs, which might not be 

enough to efficiently represent the impact of a seismic signal on the structural demand. Machine learning 

(ML) methodologies can potentially aid in revealing the underlying nonlinearity of such interaction 

(Banimahd et al., 2024, Mohammadi et al., 2023a, Mohammadi et al., 2023b, Karimzadeh et al., 2023, 

Mignan and Broccardo, 2020). Thus, the main objective of this work is twofold: (i) to explore the ability of 

artificial neural network (ANN) models to predict the peak safe rocking response and (ii) to identify the 

critical ground motion characteristics that govern the rocking amplitude. 

2 ROCKING DYNAMICS, INTENSITY MEASURES, AND ENGINEERING DEMAND 
PARAMETERS 

The rocking block of Figure 1 is a structural model that can describe the dynamics of a wide class of rocking 

configurations (DeJong and Dimitrakopoulos, 2014). Under a horizontal ground excitation, the block 

commences rocking once the ground acceleration exceeds the minimum threshold: 

|𝑢̈𝑔| = 𝑔𝑡𝑎𝑛𝛼 (1) 

where 𝑔 is the gravitational acceleration, and 𝛼 is the slenderness angle (Figure 1). During rocking, the 

equation that describes the rocking motion of the block is: 

𝜃̈ = −𝑝2 [𝑠𝑖𝑛(𝛼𝑠𝑔𝑛(𝜃) − 𝜃) +
𝑢̈𝑔

𝑔
𝑐𝑜𝑠(𝛼𝑠𝑔𝑛(𝜃) − 𝜃)] (2) 

 

Figure 1 The rocking block model when subjected to a horizontal ground excitation. 
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where 𝑝 = √3𝑔 4𝑅⁄  is the frequency parameter of the block, and 𝑅 is the half-diagonal distance. When, 

during rocking, the block impacts the ground, energy is lost. The amount of energy loss at impact is captured 

by the coefficient of restitution 𝜂 and expressed as a relationship between the post- with the pre-impact 

angular velocities 𝜃̇+ = 𝜂𝜃̇− (Housner 1963). This study considers 𝜂 as an independent input variable whose 

contribution to rocking response is investigated. 

To capture the effect of ground shaking on the rocking response, this work adopts a selection of 

dimensionless IMs that can efficiently represent different aspects of a seismic waveform, such as frequency, 

amplitude, duration, and energy content. It also introduces two novel IMs, the intensity-based 𝑝𝑀𝐼𝑉 𝑔𝑡𝑎𝑛𝛼⁄  

and the frequency-based 1 (𝑝√𝑡𝑢𝑛𝑖 𝑣0⁄ )⁄  (Banimahd et al., 2024), which, respectively, represent the 

amplitude and the frequency of appearance of the individual impulses formed between the accelerogram and 

the rocking initiation threshold. 

Finally, as an engineering demand parameter, the ratio of the absolute peak rocking rotation |𝜃|𝑚𝑎𝑥 over the 

slenderness angle 𝛼 is chosen. 

Table 1. Dimensionless intensity measures (Banimahd et al., 2024). 

Category Intensity measure Definition 

Intensity-based 

𝑃𝐺𝐴 𝑔𝑡𝑎𝑛𝛼⁄  𝑃𝐺𝐴 = max⁡(|𝑢̈𝑔(𝑡)|) = peak ground acceleration 

𝑝𝑃𝐺𝑉 𝑔𝑡𝑎𝑛𝛼⁄  𝑃𝐺𝑉 = max⁡(|𝑢̇𝑔(𝑡)|) = peak ground velocity 

𝑝𝑀𝐼𝑉 𝑔𝑡𝑎𝑛𝛼⁄  MIV = maximum incremental velocity 

Frequency-based 

𝑃𝐺𝐴 𝑝𝑃𝐺𝑉⁄   

𝑃𝐺𝑉 𝑝𝑃𝐺𝐷⁄   

𝑝𝑇𝑚 𝑇𝑚 = ∑ (𝐶𝑖
2 𝑓𝑖⁄𝑖 ) ∑ 𝐶𝑖

2
𝑖⁄  = mean period 

1 (𝑝√𝑡𝑢𝑛𝑖 𝑣0⁄ )⁄  𝑣0 = number of crossings per unit of (bracketed) time 

Duration-based 

𝑝𝑡𝑠𝑖𝑔 𝑡𝑠𝑖𝑔 = significant duration 

𝑝𝑡𝑢𝑛𝑖 𝑡𝑢𝑛𝑖 = uniform duration 

𝑝𝑡𝑏𝑟𝑐 𝑡𝑏𝑟𝑐 = bracketed duration 

𝑝𝑡𝑠𝑢𝑠𝑡 𝑡𝑠𝑢𝑠𝑡 = sustained duration 

Energy-based 

𝐴𝑅𝑀𝑆 𝑔𝑡𝑎𝑛𝛼⁄  𝐴𝑅𝑀𝑆 = √
1

𝑡𝑡𝑜𝑡
∫ (𝑢̈𝑔(𝑡))

2𝑑𝑡
𝑡𝑡𝑜𝑡
0

 = root mean square acceleration 

𝑝𝐼𝐴 𝑔𝑡𝑎𝑛𝛼⁄  IA = Arias intensity 
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3 THE INTERRELATIONSHIP BETWEEN SEISMIC SIGNAL AND ROCKING 
AMPLITUDE 

To investigate the interrelationship between seismic signal and rocking amplitude, this work employs 

Artificial Neural Networks (ANN). Prior to training, this study conducts nonlinear dynamic analyses, the 

results of which serve as the input dataset for the training of the ANN model. To this end, a variety of 

rocking blocks are adopted with frequency parameter 0.7 ≤ 𝑝 ≤ 4 rad/s and slenderness angle 0.07 ≤ 𝛼 ≤ 0.4 

rad, covering a wide range of rocking configurations, e.g., building/lab contents, masonry façades, and/or 

bridge columns. Furthermore, the coefficient of restitution 𝜂 is considered an independent input variable with 

values 0.72 ≤ 𝜂 ≤ 0.99 (Sorrentino et al., 2011, Galvez et al., 2022). Finally, recorded earthquakes from the 

PEER database (Ancheta et al., 2014) are employed to shake the rocking blocks. In total, 59,640 response-

history analyses are conducted, resulting in 2,710 safe rocking cases. 

In general, an ANN model consists of (at least) three layers: (i) input layer, (ii) output layer, and (iii) hidden 

layer(s). The appropriate number of hidden layers varies based on the complexity of the problem. Each layer 

consists of neurons, which are connected and interact with each other via adjustable weights. The number of 

neurons in the input and output layers corresponds to the number of input and output variables, respectively. 

On the other hand, the number hidden layers and neurons in each hidden layer varies and depends on the 

complexity of the problem (Haykin 2004). In this study, a single hidden layer is adequate to train the ANN 

model efficiently, while the hidden layer with 13 neurons provides the optimal solution (Banimahd et al., 

2024). The input layer consists of 14 neurons (i.e. one for each input variable of Table 1 and the coefficient 

of restitution). For a more generalised ANN model, i.e., adequately robust to an unseen (new) dataset, this 

work divides the whole input dataset into three parts: (i) train, (ii) validation, and (iii) test dataset. The train 

dataset is utilised to optimise the parameters of the ANN model (i.e. weights and biases). The validation 

dataset is used during the training process to evaluate the performance of the trained model. The test dataset 

is utilised to evaluate the predictive ability of the trained ANN model. Also, to improve the stability of the 

model, the k-fold cross-validation approach is employed (Hastie et al., 2009). The k-fold cross-validation 

approach commences, assuming that 20 % of the whole dataset serves as the test dataset. This part does not 

participate in the learning process. The remaining 80 % is randomly divided into k groups such that k-1 

subsets are used for training and the remaining one for validation. In this study, k is equal to ten (Hastie et 

al., 2009). Finally, the performance of the ANN model is evaluated with the test dataset via the use of 

different statistical metrics, such as the Pearson correlation coefficient (𝑟𝑃) and the coefficient of 

determination (𝑅2). 

 

Figure 2. (a) Actual targets versus predicted outputs, and (b) distribution of the prediction error. 
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Figure 2a illustrates the predictive ability of the trained ANN model by plotting the actual targets with 

respect to the corresponding predicted outputs. In addition, Figure 2a presents the linear trendline and 

emphasises the difference between the ANN prediction (dashed blue line) and the perfect one (solid red line). 

The performance of the ANN is quantified by a Pearson correlation coefficient as high as 𝑟𝑃 = 0.884 and a 

coefficient of determination 𝑅2 = 0.776, illustrating an adequately accurate prediction of the peak safe 

rocking response considering that both targets and outputs are given on a natural scale where a certain level 

of scatter is expected−contrary to a logarithmic scale. In the same context, Figure 2b shows that the mean 

value of the prediction error is close to zero (𝜇 = −0.011) with a standard deviation of 𝜎 = 0.087, which 

confirms that the model is unbiased and the errors are random, indicating that the ANN model is a reliable 

predictor of the rocking amplitude. 

To reveal the contribution of each input variable (i.e. the IMs of Table 1 and the coefficient of restitution 𝜂) 

to the rocking amplitude, this section adopts two different methodologies: (i) the Garson (Garson 1991) and 

(ii) the Olden (Olden and Jackson, 2002) methods. According to the Garson method, each connection weight 

between the hidden and output layers is partitioned into components associated with each input neuron. A 

limitation of the Garson method is that it solely uses the magnitude of the connection weights to calculate the 

importance factor. On the contrary, the Olden method considers both the magnitude and the direction (i.e. 

positive or negative) of the connection weights to calculate the importance factor of each input parameter to 

the output. 

Figure 3 plots all the input variables of Table 1 and the coefficient of restitution 𝜂 based on their contribution 

to the peak safe rocking response (from the highest to the lowest). As expected, the two methods provide 

slightly different results. Nevertheless, Figure 3 reveals an adequate level of consistency in the results 

regardless of the method used. Specifically, Figure 3 unveils that the peak safe rocking response is governed 

by a combination of the frequency-based 𝑝𝑇𝑚, the duration-based 𝑝𝑡𝑢𝑛𝑖, and the intensity-based 

𝑝𝑀𝐼𝑉 (𝑔𝑡𝑎𝑛𝑎)⁄  as well as 𝑝𝑃𝐺𝑉 (𝑔𝑡𝑎𝑛𝑎)⁄ , highlighting the consistent significance of a novel IM for the 

rocking literature, i.e. the intensity-based 𝑝𝑀𝐼𝑉 (𝑔𝑡𝑎𝑛𝑎)⁄ . The considerable influence of the frequency of 

appearance of the individual impulses of exceedance 1 (𝑝√𝑡𝑢𝑛𝑖 𝑣0⁄ )⁄  and the intensity-based 𝑃𝐺𝐴 (𝑔𝑡𝑎𝑛𝑎)⁄ . 

to the rocking amplitude is also observable. On the contrary, the contribution of the coefficient of restitution 

𝜂 on the peak safe rocking response is not high enough to be considered as important/dominant. Finally, note 

that the Olden method (Figure 3b) also reveals the sign of contribution, implying that when all input 

variables are considered, e.g. increase of the frequency-based 𝑃𝐺𝑉 𝑝𝑃𝐺𝐷⁄  leads to decrease of the peak safe 

rocking response. 

 

Figure 3. Significant predictors (from the most to the least important) of the peak safe rocking response 

based on the (a) Garson, (b) Olden methods. 
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4 CONCLUSIONS 

This paper investigates the ability of Artificial Neural Networks (ANN) to predict the peak response of 

multiple rigid rocking blocks when subjected to random recorded earthquakes. The focus of this research is 

on cases where the rocking blocks safely return to their initial rest position after the end of the ground 

shaking. Thus, the main objective of this research is first (i) to train an ANN model to accurately predict the 

(safe) rocking amplitude and (ii) to reveal the most influential input variables on the prediction. The results 

unveil that a combined consideration of duration, frequency, and intensity characteristics of the ground 

motion shows a substantial contribution to the rocking amplitude. Interestingly, this paper also identifies a 

novel ground motion characteristic that shows an adequate correlation with the response, i.e., the maximum 

incremental velocity, while also paying special attention to the role of the coefficient of restitution, which is 

found to be less significant compared to the remaining input variables of the rocking problem. 
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