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ABSTRACT 

Modern day design codes are the result of six decades of seismic engineering developments, most of which 

have been focused on elastic modal methods. Modal methods are strictly not applicable to inelastic systems 

and hence the adaptation of modal methods to seismic engineering has demanded that assumptions be made 

on fundamental aspects and restrictions be made on designs to provide confidence that the systems developed 

could be expected to perform well in an earthquake. These assumptions and restrictions lead to simple 

prescriptive rules which in the present day forms the backbone of most prescriptive code procedures. Although 

some of these assumptions have no physical/ mathematical justification other than “mathematical 

convenience”, the methods have become so ingrained in common day design practice that practitioners believe 

they provide the ultimate truth and demands that all designs must ultimately follow these simple rules. This 

thinking creates a huge impediment in the implementation of true performance based seismic design (PBSD), 

because it fundamentally defeats the purpose of the process of PBSD. In comparison to code-based design, 

where once the prescriptive rules are satisfied, it is believed the system will perform adequately In true PBSD, 

the target or demonstrated performance should drive the design. This focus of true PBSD requires the design 

be proven to satisfy the laws of physics rather than simple prescriptive rules. In this paper, using complex 

modal analysis, we discuss the issues with the pseudo procedure in prescriptive codes and the impediments in 

implementing “true” PBSD in a professional community so wedded to prescriptive procedures. Through 

numerical examples, it is shown that a “true” PBSD design does not need to demonstrate compliance by 

traditional prescriptive approaches adopted in the code. 



 

Paper 113 – Code Based Design vs. Performance Based Design … 

NZSEE 2024 Annual Conference 

 

Sensitivity: General 

1 INTRODUCTION 

Due to the increase in estimates of seismic hazard (e.g. in Wellington the hazard goes up by a factor of 2), and 

the cost of the past earthquakes, (e.g. Christchurch earthquake series cost >NZD $ 45 billion, about 20% New 

Zealand’s GDP), modern day seismic design strategies for highly seismic regions like Wellington in New 

Zealand are slowly shifting towards performance-based approaches.  

In a performance-based approach, the design is completed to achieve a certain set of performances in the future 

earthquakes. Unlike the prescriptive code methods, the performance-based design approaches require the 

design to demonstrate that the targeted performances are achieved. In this context, a “true” Performance-Based 

Seismic Design (PBSD) (as used in this paper) refers to the designs which are shown to have achieved 

compliance through rigorous nonlinear time history analysis (NLTHA).    

In practice, generally the PBSD first starts with the prescriptive code approach. Once the design satisfies the 

code clauses. it is subjected to NLTHA for evaluating the performance. If all the performance estimates are 

satisfactory, then the design is deemed acceptable and, if not, it is revised. So, in practice, this might result in 

several iterations of the design. Through this process of following the prescriptive procedure (code-based 

approach) in general practise is a matter of convenience. The majority of the profession seems to believe that 

to provide an acceptable design, the prescriptive requirements must be satisfied. This presents a huge 

impediment in the implementation of “true” PBSD in practice. 

In this paper, we demonstrate using nonclassical modal analysis that for a “true” PBSD carried out using 

NLTHA, there appears to be no need to satisfy the prescriptive rules of a code-based design. We also 

demonstrate that the prescriptive code-based approaches using classical modal methods are, at most, a 

convenience that has limited mathematical or physical justification when applied to an inelastic system.  To 

show this, we begin the paper with a section describing how inelasticity actually happens in the structure; the 

next section summarises very recent work by Carr et al. 2024 where the concept of complex modes is 

introduced; the following next section introduces the concept of complex participation factor, effective mass 

of an inelastic system and migrating base shears; section 5 uses two case study structures to demonstrate the 

effects described in sections 3 and 4; section 6 provides conclusions the authors have reached.  

2 HOW IS INELASTICITY EXHIBITED IN REAL STRUCTURES? 

Inelastic excursions are inevitable in the response of structures subjected to high seismic loading. A well-

designed structure tends to develop nonlinear hinges at selected locations as a means for dissipating the seismic 

energy. Figure 1 (Sharpe 1974) illustrates the snapshots of these concentrated hinge occurrences in a 2D frame 

structure during different instances of time in a NLTHA. The frame is subjected to the classic El Centro 

earthquake. The black dots in Figure 1 depict the plastic hinges and the numerical value below each frame 

depicts the time (i.e., 4.89 means 4.89 seconds).  It can be seen that there is no definite pattern in which the 

hinges appear and disappear and this is a function of the specific characteristics of the structure and the 

incoming ground motion dynamics.  
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Figure 1: Hinge migration in a multi-storey structure when subjected to El-Centro May 1940 

What Figure 1 does not illustrate is the amount of incurred ductility or what degree of deformation is being 

exhibited by individual hinges. In other words, when inelastic excursions happen at certain points as illustrated 

by Figure 1, depending on the structural dynamics and the ground motion interaction dynamics, the incurred 

ductility/deformation in individual hinges will vary quite remarkedly. The direct implications of this variability 

of deformations in the local hinges on the whole system will be that, at every time step, there will be differences 

in the deformation pattern and amplitude exhibited by the global mode. In other words, this means at each time 

step, depending on the inelasticity, the system has a completely different set of basis vectors or eigen modes. 

The next section will try to illustrate this in more detail. 

3 HOW DOES THE DYNAMICS OF THE STRUCTURE CHANGE WHEN 
INELASTICITY OCCURS?  

In section 2, it was shown that inelasticity may not occur uniformly and may have highly coupled spatio-

temporal variance in the behavior, even in reasonably simple structural forms.  The pertinent question is, what 

does this spatio-temporal variance in the behavior mean to the overall system dynamics? To answer this, a 

detail study was conducted by Carr et al. (2024) using complex modal-domain-based-dynamics using a simple 

four storey shear frame as a case study. The key outcomes of the study are summarised as follows: 

• When system goes inelastic, damping is no longer proportional and the assumptions implied in the classical 

modal dynamics are violated, invalidating the response spectrum approach. 

• Mode shapes change when system becomes inelastic and is complex in nature with appearance of 

imaginary components resulting in phasing effects (Refer Figures 2-4). 

• Natural frequencies are complex after system becomes inelastic. 

• Modal damping ratios become complex numbers when a system becomes inelastic. 

 

More details on each of these outcomes are available in the paper. Although each of these outcomes illustrate 

the violation of classical modal dynamics, from a design point of view, the net effect is felt in the gross violation 

of the physics in the inherent assumption of the simplification of a MDOF system to a SDOF system.  In other 

words, when the system goes inelastic there is effectively a different base shear that is felt by the system in 

different modes at every time step. Alternatively, what happens is, there will be modal mass migration and 
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hence base shear migration or fluctuations between modes. In this paper a mathematical illustration is 

presented on this effective modal base shear which is an extension of the work done by Carr et al. (2024). 

Section 6 demonstrates this phenomenon of modal base shear migrations through two case studies. 

Before delving into the mathematical basis, Figures 2-4 presents the proportional and nonproportional 

(complex) mode shapes. A nonproportional/complex mode shape (blue) appears when the system goes 

inelastic and as depicted in the Figures 2-4, every degree of freedom in the mode does not reach the maximum 

modal displacement at the same instant; in other words, they exhibit phasing effects. 

 

Figure 2: Elastic and inelastic first mode of a four-storey shear frame (Carr et al. 2024) 

 

 

Figure 3: Elastic and inelastic second mode of a four-storey shear frame (Carr et al. 2024) 
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Figure 4: Elastic and inelastic third mode of a four-storey shear frame (Carr et al. 2024) 

The pertinent question is what will be the implications of this phenomenon of appearance of these complex 

modes for the common modal based design process adopted in the code? Alternatively, does the appearance 

of complex modes result in an error in the normal spectral based design process?  

As can be seen from Figures 2-4, when the system goes inelastic, the mode shapes are no longer the same as 

an elastic system. This aspect has huge effect on the prescriptive procedures followed by the codes as the 

underlying principle followed by all major codes is that mode shape remains the same. However, when the 

system goes inelastic, that is not true. Sections 4 and 5 demonstrate the implication of this aspect by reflecting 

the changes in the computed effective complex modal mass and hence the structures base shears. 

 

4 CONCEPT OF COMPLEX MODE PARTICIPATION FACTOR, EFFECTIVE MASS 
AND FLUCTUATING MODAL BASE SHEARS 

As described in the previous section, when the structure goes nonlinear the system becomes nonproportional 

which means the classical real modes no longer exist. This now calls for a nonclassical approach when applying 

modal analysis. In this section a brief description of the nonclassical modal analysis is given and a new concept 

of a complex mode participation factor and associated effective modal mass and base shear using complex 

modes are described. Readers who are not interested in the mathematical derivations may skip this section 

without any discontinuity to the reading. 

Classical equation of motion for a structural system subjected to earthquake loading is given as, 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑢(𝑡) = −𝑀𝑅�̈�𝑔(𝑡)                    (1) 

 

Here, 𝑀,𝐶 and 𝐾 are the mass, damping and stiffness matrices, respectively.  𝑓(𝑡) is the force vector varying 

with time and, in the case of earthquake loading, this becomes −𝑀𝑅�̈�𝑔(𝑡) where �̈�𝑔(𝑡) is the ground-motion 

acceleration record, R is the directionality influence vector and (𝑡) indicates variation of the quantity with 

time.  �̈�, �̇� and 𝑢 represent the relative acceleration, velocity, and displacements, respectively. 

 

For the structure presented in equation (1) to have normal modes or classical modes, the Caughey criterion 

needs to be satisfied. The Caughey criterion (Caughey & Kelly 1965) states that, for normal modes to exist,  

 𝐾𝑀−1𝐶 = 𝐶𝑀−1𝐾                       (2) 
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In the case of equation (2), when structure goes nonlinear, this does not hold true, and hence the damping 

becomes non-proportional; in other words the original basis vectors (elastic mode shapes) cannot diagonalize 

the “M-C-K” matrices.   

For a proportionally damped structure the mode shapes are identical to those of the undamped structure and 

only the natural frequencies are modified by the damping. This is the assumption in all code-based design 

methods.  If the structure exhibits non-proportional damping, the eigen-problem is non-symmetric so that the 

natural frequencies, damping ratios and mode shapes may be complex numbers. 

To understand physically the effects of non-proportionality, let’s consider the homogenous monic form of 

equation (1): 

𝐼�̈�(𝑡) + 𝑀−1𝐶�̇�(𝑡) + 𝑀−1𝐾𝑢(𝑡) = 0                     (3)  

Equation (3) is further transformed as: 

𝑀−1 2⁄ 𝑀𝑀−1 2⁄ 𝑀
1
2⁄ �̈�(𝑡) + 𝑀−1 2⁄ 𝐶𝑀−1 2⁄ 𝑀

1
2⁄ �̇�(𝑡) + 𝑀−1 2⁄ 𝐾𝑀−1 2⁄ 𝑀

1
2⁄ 𝑢(𝑡) = 0                  

(4) 

Assigning the following: 

𝑦(𝑡) = 𝑀
1
2⁄ 𝑢(𝑡)

�̂� = 𝑀−1 2⁄ 𝐶𝑀−1 2⁄

�̂� = 𝑀−1 2⁄ 𝐾𝑀−1 2⁄

}                      (5) 

Equation (3) becomes: 

𝐼�̈�(𝑡) + �̂��̇�(𝑡) + �̂�𝑦(𝑡) = 0                     (6) 

Now, in the modal domain: 

𝑦(𝑡) = Φ𝑛𝑞(𝑡)                         (7) 

Φ𝑛represents the normal mode obtained by ignoring the damping term or in other words the basis vectors 

only considering the “M and K” matrices. Substituting equation (7) in equation (6) and pre-multiplying by 

Φ𝑛
𝑇 , we get: 

[
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] {�̈�(𝑡)} + [Φ𝑛
𝑇�̂�Φ𝑛]{�̇�(𝑡)} + [

𝑘1̂ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘�̂�

] {𝑞(𝑡)} = 0              (8) 

If the damping is proportional, the second matrix term on the left-hand side should also have a diagonal form 

that de-couples the entire MDOF into a series of SDOFs.  This is not the case when the structure goes inelastic 

as the Caughey criterion, given in eq.(2) is generally violated and the damping non-proportionality 

phenomenon is exhibited. In other words, systems with non-proportional damping will have off-diagonal terms 

which are of considerable magnitude preventing the above-mentioned de-coupling of the entire MDOF 

structure into a series of SDOFs using normal modes. 

Therefore, an alternative treatment with a damped eigen-decomposition needs to be undertaken. The eigen 

decomposition of the  𝑀− 𝐶 − 𝐾 structure is performed through a state-space formulation.  Readers can 

refer to Hurty & Rubinstein (1964) for more details. 

{
�̈�(𝑡)

�̇�(𝑡)
} = [−𝑀

−1𝐶 −𝑀−1𝐾
𝐼 0

] {
�̇�(𝑡)

𝑢(𝑡)
}                    (9) 
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[−𝑀
−1𝐶 −𝑀−1𝐾
𝐼 0

] = ΦΛΦ−1

Φ = [
Φ𝑐Λ𝑐 Φ𝑐

∗Λ𝑐
∗

Φ𝑐 Φ𝑐
∗ ]

Λ = [
Λ𝑐 0
0 Λ𝑐

∗ ]

Λ𝑐 = [

𝜆𝑐,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆𝑐,𝑛

]

}
 
 
 
 

 
 
 
 

                     (10) 

Here, 𝜆𝑐,𝑖 are the eigen values and Φ𝑐 is the complex mode shape matrix for 𝑡ℎ𝑒 𝑀 − 𝐶 − 𝐾 system. 

To further investigate the concept of non-proportionality, let’s rewrite equation (18) in the complex modal 

domain. 

Assume: 

𝑦(𝑡) = Φ𝑐𝑒
λ𝑐𝑡                       (11) 

Substituting equation (13) into equation (8) and pre-multiplying by Φ𝑛
𝑇 , we get: 

Φ𝑛
𝑇Φ𝑐Λ𝑐

2 +Φ𝑛
𝑇�̂�Φ𝑐Λ𝑐 + Ω

2Φ𝑐 = 0                     (12) 

where: 

Ω2 = 𝑑𝑖𝑎𝑔(𝜔𝑛𝑖
2 )                       (13) 

and is the eigen value matrix of �̂�.  For the ith mode, equation (15) may be re-written as: 

𝜔𝑖
2 +𝜔𝑖

(𝜙𝑛,𝑖
𝑇 �̂�𝜙𝑐,𝑖)

𝜙𝑛,𝑖
𝑇 𝜙𝑐,𝑖

+𝜔𝑛,𝑖
2 = 0                       (14) 

Equation (16) may be re-written as: 

𝜔𝑖
2 +𝜔𝑖 (𝑐𝑖𝑖 +

(𝜙𝑛,𝑖
𝑇 �̂�𝜙𝑐,𝑖)

𝜙𝑛,𝑖
𝑇 𝜙𝑐,𝑖

) + 𝜔𝑛,𝑖
2 = 0                    (15) 

Where 𝑐𝑖𝑖 represents the real component of the damping coefficient and 
(𝜙𝑛,𝑖

𝑇 �̂�𝜙𝑐,𝑖)

𝜙𝑛,𝑖
𝑇 𝜙𝑐,𝑖

 is the imaginary 

component of the damping coefficient. 

Since 𝜙𝑐,𝑖 is a complex value, we can say that: 

1

2𝜔𝑛,𝑖
(𝑐𝑖𝑖 +

(𝜙𝑛,𝑖
𝑇 �̂�𝜙𝑐,𝑖)

𝜙𝑛,𝑖
𝑇 𝜙𝑐,𝑖

) = 𝜉 + 𝑖𝛾                      (16) 

In the spirit of the damping ratio in classical modal analysis, Equation (16) describes the complex damping 

ratio. Alternatively, Equation (16) may be viewed as a combination of the classical damping ratio (which is 

real) and an imaginary damping ratio component which reflects the other mode effects on the damping ratio. 

In other words, these so-called other mode effects create the phenomenon of non-proportionality. According 

to Liang and Lee (1991), this is called the modal energy transfer ratio which reflects the energy transfer to 

other modes. 

If  𝛾 ≠0, the complex mode exists, and hence complex mode participation factor also exists which means the 

effective mass participating ratio will be different to what is normally computed using classical modes. How 

to compute the complex mode participation factor, state space formulation, is revisited. 

Eq. (1) is rewritten in state space format as, 
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�̇� = 𝐴𝑦 + 𝐵𝑍(𝑡)        (17)  

Where,  

𝐴 = [𝑀
−1𝐶 −𝑀−1𝐾
𝐼 0

]

𝐵 = [
−𝑅
0
]

𝑍 = {
�̈�𝑔(𝑡)

0
}

𝑦 = {
�̇�
𝑢
} }

 
 
 

 
 
 

       (18)   

 

For simplicity, if we only adopt the homogenous part of eq. (17) we get, 

𝑥 = Φ𝑐𝑒
λ𝑐𝑡         (19) 

Now on complex eigen-decomposition, we get, 

Φ𝑐 = {
λ𝑐ϕ𝑐
ϕ𝑐

}         (20) 

Since for the specific instant in time system is represented by the secant stiffness, it is linear and the response 

at that instant is given as, 

𝑥(𝑡) = ∑ ϕ𝑐𝑖𝑒
λ𝑐𝑖𝑡 +𝑁

𝑖=1 ∑ ϕ̃𝑐𝑖𝑒
λ̃𝑐𝑖𝑡𝑁

𝑖=1
      (21) 

Here ϕ̃𝑐𝑖 indicates the complex conjugate and similarly for the λ̃𝑐𝑖 as well. 

Applying Laplace to eq. (17), we get, 

[𝑠{
𝑠𝑋(𝑠)

𝑋(𝑠)
} − 𝐴 {

𝑠𝑋(𝑠)

𝑋(𝑠)
}] = {

𝑀−1�̈�𝑔(𝑠)

0
}     (22) 

 Where “s” is the Laplace variable and 𝑋(𝑠) and �̈�𝑔(𝑠) are the transformation of 𝑥(𝑡)and �̈�𝑔(𝑡). 

Applying eq. (21) in eq. (22) and doing standard mathematical manipulations in Laplace domain, the 

response of the 𝑖𝑡ℎ mode intime domain maybe given as, 

𝑥𝑖(𝑡) = ℒ
−1{−𝐻𝑖(𝑠)�̈�𝑔(𝑠)}       (23) 

where, 

𝐻𝑖(𝑠) =
𝑋(𝑠)

�̈�𝑔(𝑠)
 & ℒ−1 denotes inverse Laplace.     (24) 

So now in time domain, for lightly damped systems, we get, 

𝑥𝑖(𝑡) = 2𝜔𝑖(𝜉𝑖Φ𝑖 −Ψ𝑖)𝑦(𝑡) + 2Φ𝑖�̇�(𝑡)     (25) 

Here, Φ𝑖 and Ψ𝑖 are the real and imaginary part of the product of the complex mode shape and the 

accompaniment matrix. Now taking motivation from classical modal dynamics, expressing maximum �̇�(𝑡) in 

an approximate sense as, 

�̇�(𝑡) = 𝜔𝑖𝑐𝑜𝑠𝜃𝑦𝑚𝑎𝑥        (26) 

now eq. (25) reduces to, 

𝑥𝑖,𝑚𝑎𝑥 = 2𝜔𝑖(𝜉𝑖Φ𝑖 −Ψ𝑖)𝑦𝑚𝑎𝑥 + 2Φ𝑖𝜔𝑖𝑐𝑜𝑠𝜃𝑦𝑚𝑎𝑥    (27) 
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Where 𝜃 represents angle so that displacement reaches peak value . On further mathematical manipulation of 

eq. (27), (for details readers may refer to Hurty and Rubinstein), we get, 

𝑥𝑖,𝑚𝑎𝑥 = 2𝜔𝑖{(−𝜉𝑖Φ𝑖 +Ψ𝑖) + 0.4Φ𝑖}𝑦𝑚𝑎𝑥     (28) 

Now taking motivation from classical modal dynamics, the complex participation factor maybe 

approximated as, 

Γ𝑖 ≅
2𝜔𝑖{(−𝜉𝑖Φ𝑖𝑗+Ψ𝑖𝑗)+0.4Φ𝑖𝑗}

Φ̌𝑖𝑗
       (29) 

where, 

Φ̌𝑖𝑗 =
|Φ𝑖|

Φ𝑛𝑖
𝑠𝑔𝑛(Φ𝑛𝑖)        (30) 

Now motivated from classical modal dynamics, 𝑖𝑡ℎ participating complex mass ratio is given as, 

𝑃𝐹𝑚,𝑖 =
𝑅𝑒{(Γ𝑖)

2}

∑ 𝑚𝑗
𝑁
𝑗=1

        (31) 

The corresponding 𝑖𝑡ℎ  mode complex base shear may be given as, 

𝑉𝐵,𝑖 = 𝑃𝐹𝑚,𝑖 ∑ 𝑚𝑗
𝑁
𝑗=1 𝑆𝑎,𝑖       (32) 

where 𝑆𝑎,𝑖 is the spectral ordinate corresponding to the period of 𝑖𝑡ℎ  mode. 

Eq. (31) and eq. (32) give a means to estimate the effective mass and the effective base shear for an inelastic 

structure using complex modal mechanics.  The significance of equations. 31&32 is that as the inelasticity 

happens the effective modal mass and hence the base shear changes for individual modes resulting in 

different member actions and deformations across the structure. 

5 NUMERICAL CASE STUDIES 

This section investigates the aspect of change in effective modal mass and hence base shear migrations during 

inelastic excursions discussed in the previous sections. Two simple case studies are used to demonstrate this: 

a two-storey structure and a six-storey structure. Figure 1 shows how hinges migrate in a real structure. In 

every time step, the structure has a different hinge migration up the height illustrating the fact that it exhibits 

different states of inelasticity. In the present examples the inelastic states denoted as inelastic 1,2,3,4 try to 

mimic these time snaps described in Figure 1.  

5.1 Two-storey structure 

Figure 5 illustrates a two storey structure with 𝑚1 = 2.0𝑡𝑜𝑛𝑛𝑒𝑠, 𝑚2 = 2.5𝑡𝑜𝑛𝑛𝑒𝑠, 𝑘1 = 850𝑘𝑁/𝑚 and , 

𝑘2 = 750𝑘𝑁/𝑚. For simplicity the Rayleigh damping matrix is adopted for the 𝑐1& 𝑐2 coefficients. 

 



 

Paper 113 – Code Based Design vs. Performance Based Design … 

NZSEE 2024 Annual Conference 

 

Sensitivity: General 

 

Figure 5: Two-storey shear frame system 

Table 1 computes the participating mass ratios using effective mass computed using eq. 31. In the purest sense, 

eq. 31 is only applicable to elastic systems with nonproportional damping.   Table 1 is therefore computed 

using the instantaneous secant stiffness matrix, because at every instant of inelasticity, the physical structure 

in reality responds in its secant stiffness state. In other words, for every instant of inelasticity (Figure 1), there 

is a set of basis vectors (complex eigen vectors) which results in the dynamic responses exhibited by the 

structure. 

Table 1 Migrating mass participating ratios for different states of inelasticity 

Mode  Elastic Inelastic 1 Inelastic 2 Inelastic 3 Inelastic 4 

1 93% 98% 72% 78% 96% 

2 7% 2% 28% 22% 4% 

 

In Table 1, Inelastic 1 to 4 describes different states of inelasticity, with inelastic 1 being first storey inelastic 

and the rest elastic, inelastic 2 being the top storey inelastic and inelastic3 & 4 being both storeys in different 

states of inelasticity. In each of these states, secant stiffnesses are calculated, and using the complex basis set 

out in section 4 the values in 

Table 1 are computed using eq. 31. 

As can be seen from Table 1, the structure exhibits different mass participation ratios at different stages of 

inelasticity. This is a very important observation as even a simple 2-storey structure exhibits inelastic 

participating mass migrations. The differences in the participation in different modes in different inelastic 

states can be very different to the elastic state (e.g., the second mode participation in inelastic state 2 is about 

400% more than in the elastic state). This simply means at that specific instant; the second mode base shear is 

at the least 400% different to what is being estimated from an elastic analysis. This results in larger member 

forces and deformation responses which is the main reason why structures designed to the codes may 

sometimes exhibit very different responses when evaluated with nonlinear time history analysis. 

5.2 Six-storey structure 

Figure 6 illustrates a six-storey structure with uniform masses 𝑚𝑖  (𝑖 = 1…6) of 80 tonnes and stiffness 

𝑘𝑖  (𝑖 = 1…6) of 4 × 107 N/m. For simplicity Rayleigh damping matrix is adopted for the 

 𝑐𝑖  (𝑖 = 1…6) coefficients. 
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Figure 6: Six-storey shear frame system 

Table 2 Migrating mass participating ratios for different states of inelasticity 

Mode Number Elastic Inelastic 1 Inelastic 2 Inelastic 3 Inelastic 4 

1 87% 82% 97% 68% 76% 

2 9% 8% 2.5% 29% 15% 

3 3% 5% 0.5% 1% 8% 

 

Table 2 computes the participating mass ratios using the effective mass computed using eq. 31. Similar to 

section 5.1, Table 2 is computed using the instantaneous secant stiffness matrices. 

Inelastic 1…4 states in Table 2 exhibits different states of inelasticity, with inelastic 1 being first storey 

inelastic and rest elastic, inelastic 2 being top storey inelastic and inelastic 3 & 4 being both storeys in different 

state of inelasticity. In each of state, secant stiffnesses are calculated and the Table 2 is computed using eq. 31. 

As can be seen from Table 2, the structure exhibits different mass participation ratios at different stages of 

inelasticity. This is a very important observation that is similar to the 2-storey structure; the 6-storey structure 

also exhibits inelastic participating mass migrations. The differences in the participation in different modes in 

different inelastic state can be very different to the elastic state, for example, the second mode participation in 

inelastic state 3 is about 320% more than in the elastic state. This simply means at that specific instance, the 

second mode base shear is at the least 320% different to what is being estimated from an elastic analysis.  

This suggests that the prescriptive pseudo spectral approach adopted in codes does not necessarily reflect the 

real dynamics as exhibited by the inelastic structure and the actions associated with it. 

The phenomenon of modal mass migrations and the base shear migrations are automatically accounted for in 

a NLTHA analysis. Hence the authors believe that in a “true” PBSD design showing compliance through 

NLTHA, where all the inelastic actions are reliably estimated, there is no need to show compliance through 

the prescriptive procedures as outlined in the code.  
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6 CONCLUSIONS 

Using complex modal analysis, the paper discusses the issues associated with the prescriptive procedures 

adopted in the code approaches and the need for a paradigm shift in the design thinking by the profession. The 

concept of complex modal mass participation ratio is introduced and how to compute it is presented. It is shown 

through numerical examples that the common belief that a “true” PBSD design needs to demonstrate 

compliance through traditional prescriptive approaches adopted in the code is completely unfounded. The 

profession needs to recognize the superiority of the NLTHA methods over modal/spectral methods. We feel 

that these methods should be made the main compliance pathway and made mandatory for seismic design in 

regions with a likelihood of large ground shaking.  
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