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ABSTRACT 

Many state-of-practice methods for predicting liquefaction manifestation, such as the Liquefaction Severity 

Number (LSN), are known to suffer from significant overprediction in regions characterised by complex soil 

profiles comprising interbedded sands, silts, and clays. These methods typically analyse discrete soil layers, 

and sum results layer-by-layer, which does not properly account for system effects. 

We demonstrate that machine learning techniques can be used to identify cases where simplified layer-by-

layer liquefaction vulnerability indices give overestimated surficial liquefaction manifestation. Specifically, 

we have developed a convolutional neural network model. With the aim of better accounting for system 

effects, the model considers the full length of a CPT profile simultaneously to capture system effects of soil 

profiles such as interbedding, rather than processing and then aggregating information in discrete layers. 

A database of over 47,000 case histories was used for training and model evaluation, spanning ten New 

Zealand earthquakes. Special techniques were used to address sampling bias and class imbalance. Finally, an 

adjustment procedure is proposed, which uses the machine learning model to improve the accuracy of LSN 

for specific site categories, resulting in significant accuracy improvements. 

This research has been funded by Toka Tū Ake EQC to advance liquefaction science, and support a range of 

applications in New Zealand, including local government planning, public engagement and education, and 

loss modelling. 
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1 INTRODUCTION 

A variety of state-of-practice methods exist to predict surficial liquefaction manifestation, typically based on 

subsurface test data such as that provided by a Cone Penetration Test (CPT) or a Standard Penetration Test 

(SPT). Manifestation is taken as a True-or-False value corresponding to whether the effects of liquefaction 

are visible at the ground surface (such as ejecta, ground surface distortion, etc.), or else manifestation is 

quantified on a severity spectrum using a liquefaction severity index correlated with manifestation, such as 

the Liquefaction Potential Index (LPI) of Iwasaki et al. (1981), and the Liquefaction Severity Number (LSN) 

of van Ballegooy et al. (2014). 

It is known that in some areas, these liquefaction severity indexes can suffer from systematic overprediction 

of liquefaction (van Ballegooy et al., 2014), where the calculated index has a higher value than would be 

expected given the levels of manifestation observed from case histories. Specifically, overprediction has 

been demonstrated to occur on soil profiles having predominantly high fines-content, high-plasticity soil 

strata (Beyzaei et al., 2018; Upadhyaya et al., 2023) and for highly stratified deposits of interlayered sands, 

silts, and clays (van Ballegooy, 2018), especially those with low-permeability (Geyin and Maurer, 2021). 

Manifestation prediction models tend to perform worse on profiles with multiple liquefied strata, and this 

issue is exacerbated for simplified methods which implicitly assume that liquefiable strata are independent 

entities, such as LSN (Rateria and Maurer, 2022). These simplified methods analyse discrete soil layers and 

sum the results layer-by-layer. This process does not properly account for system response effects. The 

system response of deposits is a fundamental consideration when assessing manifestation and can help 

explain why manifestation is overpredicted is by LSN (Cubrinovski et al., 2019).  

The objective of this study is to use Machine Learning (ML) with CPT data to identify these cases where 

LSN is overpredicting manifestation and to develop a corrective procedure to improve LSN’s accuracy in 

such cases. By allowing the entire CPT profile as input data to the ML model, rather than as a collection of 

individual layers analysed in isolation, the model can capture the system response of deposits. 

Note that the purpose of the ML model is not to directly predict whether there would be manifestation. 

Instead, it is a “watchdog” model: it determines when LSN is likely to be significantly overpredicted, and 

then a separate correction procedure can be applied to the LSN values. 

2 RELATED STUDIES 

There are many existing studies which explore the use of ML models to predict liquefaction. Maurer and 

Sanger (2023) have undertaken a thorough review of these, and we agree with their conclusion that there are 

prevailing, severe methodological issues with much of the current literature. Despite this, they conclude there 

are good reasons to use ML techniques to empirically improve state-of-practice methodologies for surficial 

liquefaction manifestation prediction. 

A successful example of this was the work of Rateria and Maurer (2022) who undertook re-regressions of the 

H1–H2 method of Ishihara (1985) against up-to-date case history data. For these re-regressions, ML models 

were used, and they were found to outperform an approach where LSN is compared against a decision 

threshold (e.g., surface ground damage predicted to be present if LSN > 15). These methods are used to 

predict manifestation as a True-or-False value and do not account for severity. 

It was observed by van Ballegooy et al. (2018) that there are systematic visual differences between the 

plotted CPT data at sites where LSN is giving accurate predictions and those where it is underpredicting or 

overpredicting. This provides evidence that it is possible, in principle, for a well-developed machine learning 

model to provide an improvement on LSN. 
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3 METHODOLOGY 

3.1 Data Preparation 

3.1.1 New Zealand Liquefaction Manifestation Case History Dataset 

110,000 Liquefaction Case Histories were compiled from 10 historical New Zealand earthquakes, mostly 

from the Canterbury Earthquake Sequence (CES) but also three other events. 

Each case history comprised a CPT, a modelled groundwater depth (GWD), a modelled Peak Ground 

Acceleration (PGA), and the event’s moment magnitude (𝑀𝑤). These were used as the input data for the 

machine learning model. Each case history also included a land damage observation: either of manifestation, 

or absence thereof (i.e. it was directly observed that no manifestation was present). These case histories are 

enumerated in Table 1, and the source of data for these case histories is enumerated in Table 2. 

The CPTs were sourced from data in the New Zealand Geotechnical Database as of 6th June 2023 and 

supplemented by additional proprietary data provided by Tonkin & Taylor Limited. CPTs were subjected to 

minimum data quality requirements, and some basic data cleaning was applied. CPTs were not included 

when they were performed at sites with ground improvement. 

The model was only trained on 47,700 of the case histories (with 21,900 distinct CPTs), namely the ones 

where the PGA was between 0.2g and 0.8g. Below 0.2g, only 788 of case histories (1%) show overprediction 

using LSN. This is too few case histories with which to properly train the ML model. Similarly, there are not 

enough case histories with PGAs above 0.8g. 

Table 1: Case history data used in this study. 

Event Name 
GeoNet 

Public ID 
𝑴𝒘 

PGA 

Data Source* 

GWD 

Data Source* 

Damage Observation 

Data Source* 

Case History 

Count 

Edgecumbe 1987 04228 6.5 [1] [1] [1] 395 

CES Sept 2010 3366146 7.1 [2] [3] (Sept) [5] 19,619 

CES Oct 2010 3391440 4.8 [4] [3] (Sept) [6] 28,473 

CES Feb 2011 3468575 6.2 [2] [3] (Feb) [5] 18,930 

CES Apr 2011 3497857 5.0 [2] [3] (Feb) [7] 2,863 

CES Jun 2011 A 3528810 5.3 [2] [3] (Jun) [7] 2,849 

CES Jun 2011 B 3528839 6.0 [2] [3] (Jun) [5] 5,204 

CES Dec 2011 B 3631380 6.0 [2] [3] (Dec) [5] 12,321 

Christchurch 2016 3528839 6.0 [8] [9] [10] 17,208 

Kaikōura 2016 2016p 

858000 

7.8 [4] [11] [12] 
2,158 

* See Table 2 
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Table 2: Case History Data Sources used in this study. 

ID Case History Data Source 

[1] Mellsop et al. (2017). 

[2] 
Bradley and Hughes (2012) and Bradley (2012), in some areas choosing to defer to kriging on strong 

motions station data (O’Rourke and Milashuk, 2011). 

[3] Tonkin + Taylor (2013), Appendix C. 

[4] 2022 National Seismic Hazard Model hindcasting models created by GNS Science. 

[5] Tonkin + Taylor (2015). 

[6] 
Comprehensive reconnaissance mapping performed by Sjoerd van Ballegooy. Damage was localised 

to Hoon Hay. 

[7] Reconnaissance mapping around the Avon River performed by Tonkin + Taylor. 

[8] Model developed using a similar methodology to [2] by Bradley (University of Canterbury, 2016). 

[9] Model developed using a similar methodology to [3] by Tonkin + Taylor. 

[10] Comprehensive reconnaissance mapping performed by Tonkin + Taylor.  

[11] In Wellington: Tonkin + Taylor (2021). In Marlborough: Ogden (2018)  

[12] 
In Wellington: reconnaissance mapping at CentrePort (Cubrinovski et al., 2017). In Marlborough: 

Bastin et al. (2021). 

 

3.1.2 LSN Calculation Methodology 

All LSN calculations in this study were performed using the Boulanger and Idriss (2014) methodology, using 

assumed values for soil unit weight (𝛾) of 18 kN/m3 and fines content estimation calibration parameter 

(CFC) of 0. Some CPTs did not have recorded groundwater measurements from the time of investigation, in 

which case the modelled level from the time of the earthquake event was imputed. The 50th percentile 

liquefaction cyclic resistance curve (CRRPL=50%) was used for this study since it is more appropriate for back-

analysis purposes. An inverse filtering procedure to correct for thin layer effects was not applied. 

Analysis was performed to a depth of 20m, and soil within any surface predrill and below the depth of CPT 

termination was assumed to be non-liquefiable in the LSN calculation. In such cases the LSN is artificially 

low, meaning that the case history is less likely to be deemed as a case of over-prediction. 

3.1.3 LSN Decision Threshold 

When LSN is above a decision threshold, but the site does not experience any manifestation, this corresponds 

to overprediction (i.e. the True-or-False estimate for manifestation is True when it should be False). Usually, 

LSN is calculated using the 15th percentile cyclic resistance curve (CRRPL=15%) rather than the 50th percentile 

used in this study. 
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For the 15th percentile, the optimal decision threshold is around 15 under the assumption that false positives 

and false negatives are equally undesirable. The same assumption gives a decision threshold of around 10 

using the 50th percentile cyclic resistance curve. However, for this study, a higher decision threshold of 15, 

rather than 10, has been adopted. This means the model focuses on the more extreme cases of overprediction. 

This reduces the scope of the model but allows for potentially higher accuracy. Further work to calibrate this 

decision threshold could potentially increase the usefulness of the model without significantly decreasing 

accuracy. 

3.1.4 Train-Validation-Test Dataset Split 

As is typical when training a machine learning model, the case histories were divided into three split sets: 

one for training the model (70% of the data), another for iteratively validating it while it is being developed 

(20%), and another for testing the final model at the very end of the model development process (10%). 

To avoid train-test contamination of individual CPTs shared across multiple case histories, a stratified 

sampling scheme was adopted for the division into split sets. All case histories associated with a particular 

CPT were forced to be confined to the same split set; this means that it is impossible for the model to be 

tested against a CPT which it has been trained against, even across different case histories. 

The testing set was not used until after the model was finalised. During model development and fine-tuning, 

performance was evaluated on the validation set, which was not trained upon directly. 

3.1.5 Oversampling Algorithm 

In the dataset, there are various forms of sampling bias, and insufficiency of data. As can be seen in Table 1, 

some events (and hence 𝑀𝑤 values) have significantly more data than others. Likewise, some PGA and 

groundwater depth parameter combinations have more data than others. The rate at which LSN overpredicts 

manifestation varies across these input parameters. 

To address these concerns, a synthetic oversampling algorithm was developed to train the model. It is based 

on a physical insight: for any case history with liquefaction manifestation, a case history with higher PGA 

and/or 𝑀𝑤 could be assumed to also give rise to liquefaction manifestation, all else being equal, i.e., for the 

same GWD and the same CPT. Conversely, the inverse holds true for cases without manifestation; a lower 

PGA and/or 𝑀𝑤 could be assumed to also not give rise to liquefaction. 

The oversampling procedure ensures an equal balance between cases of manifestation and those without it; 

as well as between correct prediction with misprediction. It is also a form of data augmentation to help the 

model avoid overfitting to the data. 

3.2 Developing the Machine Learning Model 

This study has been focused on Convolutional Neural Network (CNN) architectures. Partly, this is because 

the length of CPTs vary significantly, whereas most ML architectures require a fixed input size. 

Also, there are good theoretical reasons to justify the use of CNNs for this problem. Simplified methods to 

assess liquefaction analyse each layer in isolation (Rateria and Maurer, 2022). Similarly, the initial 

convolutional filter is trained to analyse small numbers of adjacent layers (e.g., 8cm), and this filter is re-

used down the entire soil profile. This reduces the number of trainable parameters, which in turn decreases 

the chance of overfitting. However, deeper into the network, as the convolutions condense, system effects 

can be better captured. 

A variety of CNN architectures were considered, and extensive hyperparameter experiments were 

undertaken on many of them. The best performing model architecture is shown in Figure 1. 
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Figure 1: The CNN model architecture developed in this study. Numbers annotated between layer groups 
correspond to the length of the input/output array to/from each group. Numbers annotated below layer 
groups correspond to the number of channels in the group. 

The input data was provided in an array of six channels: two for the 20m of raw CPT data in 1cm increments 

(tip resistance and sleeve friction; 𝑞𝑐 and 𝑓𝑠), two for the PGA and 𝑀𝑤 values, one for the GWD value, and 

one for a simplified saturation degree (𝑆𝑟) model, which was equal to 100% for values below the 

groundwater table and 0% above the groundwater table. In future work, better results may be possible to be 

obtained by including the soil behaviour type index (𝐼𝑐) and normalised cone tip resistance (𝑞𝑐1𝑁) as inputs. 

4 MODEL PERFORMANCE AND CONCLUSION 

When the ML model identifies a case of LSN overprediction, the LSN should be corrected by reducing it to a 

value below the decision threshold of 15. The precise value it is reduced to depends on the application; for 

design purposes, a value of 15 would potentially be appropriate as conservative choice. For loss modelling 

purposes, a value closer to zero would be more appropriate, to minimise bias (recall that overprediction cases 

correspond to cases where there was no manifestation observed – and hence no losses). More research is 

needed to provide a robust correction methodology. 

We found that in practice, when the ML model 

incorrectly identifies a case of LSN 

overprediction, most of the nearby CPTs were 

correctly identified as not having overprediction. 

On this basis, we developed a geospatial 

consensus-based application of the model: the 

ML adjustment is only applied if at least 20% of 

CPTs within 300m had LSN identified as 

overpredicting, among those with LSN > 15. The 

choice of 20% was chosen to maximise accuracy 

based on data from the CES September 2010 and 

February 2011 events. 

The accuracy of LSN with these ML-adjustments 

on the testing dataset is shown in Error! 

Reference source not found., broken down for each 

event. This is given on a 300m grid-cell-by-grid-cell 

basis, rather than CPT-by-CPT, since there are some 

areas with much spatial density of CPTs which would bias the accuracy statistic. 

Figure 2: Weighted accuracy of the model on the entire 

dataset across the different events, when applied using 
the geospatial consensus methodology. 
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Figure 3: Effect of ML-Adjusted LSN for the CES September 2010 and February 2011 events, on a grid-cell-

by-grid cell basis. The CBD is shown for context. Aerial Imagery is attributed to Environmental Canterbury 
and Earthstar Geographics. 

Figure 3 shows the effect on accuracy of applying the ML correction for the CES September 2010 and 

February 2011 events. It shows that the ML-based correction can give significant improvements in the key 

areas where LSN is known to overpredict in the south-west of Christchurch. These areas align well with the 

areas with a high value for the interbedded index developed by Geyin and Maurer (2021). There are also 

areas where the ML-based correction makes things worse (by lowering LSN when it shouldn’t be lowered, 

introducing underprediction), but the loss of accuracy in such cases is usually slight. 

A previous study by Mijic et al. (2021) compiled sites from the CES where state-of-practice methods gave 

overprediction compared with observations. From the compiled sites, those with highly stratified deposits of 

interbedded, low-permeability soils were selected in this study for further validation of the model. These are 

also shown in Figure 3. Five out of six sites fall within areas where the model's accuracy has indeed 

improved in the south-west of Christchurch. The sixth site lies beyond the scope of available data but is 

nearby. This demonstrates that the model seems to be able to address overprediction in areas dominated by 

highly stratified sands, silts, and clays. 
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This study has shown that an ML-based correction to LSN is a promising avenue of research. The neural 

network and associated correction procedure developed in this paper offer a significant improvement to 

standard LSN. However, there are many aspects which merit further research, especially new choices of 

model inputs (e.g. 𝐼𝑐 and 𝑞𝑐1𝑁), decision thresholds, vulnerability indices (e.g. LPI), and different correction 

methodologies. 

Underprediction has not been considered as a part of this research. When CPT data is not available for the 

full 20m vertical soil profile, a low LSN may be caused by a failure to consider the soil layers where CPT 

data is unavailable, rather than underprediction the LSN calculation procedure itself. This fact significantly 

limits the number of suitable CPTs available for investigating underprediction. 
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