• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand

    Thumbnail
    Date
    2002-06-30
    Authors
    Hancox, G. T.
    Perrin, N. D.
    Dellow, G.D.
    Metadata
    Show full item record
    Abstract
    A study of landsliding caused by 22 historical earthquakes in New Zealand was completed at the end of 1997. The main aims of that study were to: (a) study the nature and extent of landsliding and other ground damage (sand boils, subsidence and lateral spreading due to soil liquefaction) caused by historical earthquakes; (b) determine relationships between landslide distribution and earthquake magnitude, epicentre, isoseismals, faulting, geology and topography; and (c) establish improved environmental response criteria and ground classes for assigning MM intensities and seismic hazard assessments in New Zealand. Relationships developed from the study indicate that the minimum magnitude for earthquake-induced landsliding (EIL) in N.Z. is about M 5, with significant landsliding occurring at M 6 or greater. The minimum MM intensity for landsliding is MM6, while the most common intensities for significant landsliding are MM7-8. The intensity threshold for soil liquefaction in New Zealand was found to be MM7 for sand boils, and MMS for lateral spreading, although such effects may also occur at one intensity level lower in highly susceptible materials. The minimum magnitude for liquefaction phenomena in N.Z. is about M 6, compared to M 5 overseas where highly susceptible soils are probably more widespread. Revised environmental response criteria (landsliding, subsidence, liquefaction-induced sand boils and lateral spreading) have also been established for the New Zealand MM Intensity Scale, and provisional landslide susceptibility Ground Classes developed for assigning MM intensities in areas where there are few buildings. Other new data presented include recent earthquake studies (e.g., Murchison 1929), a preliminary landslide size/frequency distribution for earthquakes over the last 150 years, and a preliminary EIL Opportunity and hazard model for New Zealand. Implications for earthquake-induced landsliding for seismic hazard assessments in New Zealand are briefly discussed. Suggestions are also made for future EIL research, including further studies of historical earthquakes, and large prehistoric landslides in the central Southern Alps, northwest Nelson, and Fiordland, to help determine past and future earthquake activity and hazard from active faults in those regions.
    URI
    https://doi.org/10.5459/bnzsee.35.2.59-95
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback