• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving seismic performance

    Thumbnail
    Date
    2008-03-31
    Author
    Kelly, Trevor E.
    Metadata
    Show full item record
    Abstract
    Structural engineers typically improve the seismic performance of deficient structures by adding strengthening elements to the structural system, which also add stiffness to the structure. However, as performance based design becomes more common practice, the focus is on the total performance of not only the structural system but the building components and contents. A stiffer and stronger building will generally be subjected to lower drifts but higher floor accelerations than a weaker and/or more flexible building. Reduced drift related damage may be accompanied by increased damage to components and contents which are sensitive to accelerations. This paper examines two common forms of hardware used to strengthen existing buildings, buckling restrained braces (BRB) and viscous damping devices (VDD). Both types of device augment the existing structural system, rather than replace it. A series of nonlinear analyses is used to quantify the performance of two prototype frame buildings strengthened with each type of device. It is shown that equivalent structural performance, in terms of overall deformations, can be achieved with both types of device, and generally for lower cost by BRBs if only moderate levels of drift reduction are required. However, when the total building performance is examined the VDDs provide additional benefits in the form of reduced floor accelerations. The benefits of this may besufficient to warrant the higher cost solution.
    URI
    https://doi.org/10.5459/bnzsee.41.1.24-30
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback