• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A study on sensitivity of seismic site amplification factors to site conditions for bridges

    Thumbnail
    Date
    2018-12-31
    Author
    Chaudhary, Muhammad Tariq A.
    Metadata
    Show full item record
    Abstract
    Seismic site amplification factors and seismic design spectra for bridges are influenced by site conditions that include geotechnical properties of soil strata as well as the geological setting. All modern seismic design codes recognize this fact and assign design spectral shapes based on site conditions or specify a 2-parameter model with site amplification factors as a function of site class, seismic intensity and vibration period (short and long). Design codes made a number of assumptions related to the site conditions while specifying the values of short (Fa) and long period (Fv) site amplification factors. Making these assumptions was necessary due to vast variation in site properties and limited availability of actual strong motion records on all site conditions and seismic setting in a region. This paper conducted a sensitivity analysis for site amplification factors for site classes C and D in the AASHTO bridge design code by performing a 1-D site response analysis in which values of site parameters like strata depth, travel-time averaged shear wave velocity in the top 30 m strata (Vs30), plasticity index (PI), impedance contrast ratio (ICR) and intensity of seismic ground motion were varied. The results were analyzed to identify the site parameters that impacted Fa and Fv values for site classes C and D. The computed Fa and Fv values were compared with the corresponding values in the AASHTO bridge design code and it was found that the code-based Fa and Fv values were generally underestimated and overestimated respectively.
    URI
    https://doi.org/10.5459/bnzsee.51.4.197-211
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback