• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Liquefaction vulnerability increase at North New Brighton due to subsidence, sea level rise and reduction in thickness of the non-liquefying layer

    Thumbnail
    Date
    2016-12-31
    Authors
    Monk, Christopher B.
    Van Ballegooy, Sjoerd
    Hughes, Matthew
    Villeneuve, Marlene
    Metadata
    Show full item record
    Abstract
    The Canterbury Earthquake Sequence (CES) of 2010 – 2011 caused widespread liquefaction related land damage to the city of Christchurch. This paper addresses the impact the CES had on the eastern Christchurch suburb of North New Brighton with emphasis on the ground condition at the time of the initial 4 September 2010 earthquake, as well as subsidence caused by the CES, and the future potential for increased liquefaction vulnerability due to Sea Level Rise (SLR). Subsidence at North New Brighton accumulated throughout the CES due to a reduction in volume of the soil profile through liquefaction; and overall settlement due to regional tectonic subsidence. The total amount of subsidence caused by the CES at North New Brighton was as much as 1 m in some places and this has changed the relationship between the position of the ground surface and the top of the groundwater table. A reduction in thickness of the non-liquefying layer has been shown to increase the vulnerability of the soil profile to liquefaction related land damage during earthquake events. As a coastal suburb, North New Brighton is vulnerable to the impact of SLR and this paper considers the response of the groundwater table to rising sea level and the influence this will have on the thickness of the non-liquefying layer and liquefaction vulnerability.
    URI
    https://doi.org/10.5459/bnzsee.49.4.334-340
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback