• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-destructive method to investigate the hardness-plastic strain relationship in cyclically deformed structural steel elements

    Thumbnail
    Date
    2014-09-30
    Authors
    Nashid, Hassan
    Ferguson, W.G.
    Clifton, G.C.
    Hodgson, M.
    Battley, M.
    Seal, C.
    Choi, J.H.
    Metadata
    Show full item record
    Abstract
    A non-destructive hardness testing method is being developed to determine plastic strain in steel elements that have been subjected to inelastic seismic loading. The focus of this study is on the active links of eccentrically braced frames (EBFs). The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, was the first earthquake worldwide to push complete EBF systems into their inelastic state, generating a moderate to high level of plastic strain in EBF active links for a range of buildings from 3 to 23 storeys in height. Plastic deformation was confined to the active links. This raised two important questions: 1) what was the extent of plastic deformation; and 2) what effect does that have to post-earthquake steel properties? To answer these questions a range of actions is being taken. A non-destructive hardness test method is being developed to determine a relationship between hardness and plastic strain inactive link beams. Active links from the earthquake affected, 23-storey Pacific Tower building in Christchurch has been hardness and material property tested to determine the changes in the steel, and cyclic testing of active links to defined levels of inelastic demand is underway. Test results to date show clear evidence that the hardness based method is able to give a good relationship between hardness measurements and plastic strain. This paper presents recent significant findings from this project. The principal of these is the discovery that hot rolled steel tested beams, all carry manufacturing induced plastic strains, in regions of the webs, of up to 5%.
    URI
    https://doi.org/10.5459/bnzsee.47.3.181-189
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback