• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Seismic testing of model-scale geosynthetic-reinforced soil walls

    Thumbnail
    Date
    2012-12-31
    Authors
    Jackson, Perry
    Bowman, Elisabeth T.
    Cubrinovski, Misko
    Metadata
    Show full item record
    Abstract
    This paper presents an experimental study on a series of reduced-scale model GRS walls with Full-Height-Rigid facings conducted on a shake-table at the University of Canterbury. Each model was 900 mm high, reinforced by five layers of stiff Microgrid reinforcement and constructed of dry dense Albany sand. The ratio of geogrid length L to wall height H, L/H, was varied from 0.6 to 0.9, while the wall inclination was generally vertical (90° to horizontal) with 70° for one test. During sinusoidal shaking, facing displacements and accelerations within the backfill were recorded. Failure for all models was predominantly by overturning, with some small sliding component generated in the final shaking step. An increase in L/H resulted in a decrease in wall displacement, while a decrease in wall inclination from the vertical resulted in similar benefits. Detailed analysis of the deformation of one of the tests is presented. During testing, global and local deformations within the backfill were investigated using two methods: the first utilised coloured horizontal and vertical sand markers placed within the backfill; the second utilised high-speed camera imaging for subsequent analysis using Geotechnical Particle Image Velocimetry (GeoPIV) software. GeoPIV enabled strains to be identified within the soil at far smaller strain levels than that rendered visible using the coloured sand markers. These complementary methods allowed the spatial and temporal progressive development of deformation within the reinforced and retained backfill to be examined.
    URI
    https://doi.org/10.5459/bnzsee.45.4.171-183
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback