• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Bulletin of the New Zealand Society for Earthquake Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison between standards for seismic design of liquid storage tanks with respect to soil-foundation-structure interaction and uplift

    Thumbnail
    Date
    2012-03-31
    Authors
    Ormeño, Miguel
    Larkin, Tam
    Chouw, Nawawi
    Metadata
    Show full item record
    Abstract
    Field evidence has established that strong earthquakes can cause severe damage or even collapse of liquid storage tanks. Many tanks worldwide are built near the coast on soft soils of marginal quality. Because of the difference in stiffness between the tank (rigid), foundation (rigid) and the soil (flexible), soil-foundation-structure interaction (SFSI) has an important effect on the seismic response, often causing an elongation of the period of the impulsive mode. This elongation is likely to produce a significant change in the seismic response of the tank and will affect the loading on the structure. An issue not well understood, in the case of unanchored tanks, is uplift of the tank base that usually occurs under anything more than moderate dynamic loading. This paper presents a comparison of the loads obtained using “Appendix E of API STANDARD 650” of the American Petroleum Institute and the “Seismic Design of Storage Tanks” produced by the New Zealand Society for Earthquake Engineering. The seismic response assessed using both codes is presented for a range of tanks incorporating a range of the most relevant parameters in design. The results obtained from the analyses showed that both standards provide similar base shear and overturning moment; however, the results given for the anchorage requirement and uplift are different.
    URI
    https://doi.org/10.5459/bnzsee.45.1.40-46
    Published in
    • Bulletin of the New Zealand Society for Earthquake Engineering

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback