• Login
    View Item 
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Proceedings of the 2020 New Zealand Society for Earthquake Engineering Annual Technical Conference
    • View Item
    •   NZSEE Document Repository
    • New Zealand Society for Earthquake Engineering
    • Proceedings of the 2020 New Zealand Society for Earthquake Engineering Annual Technical Conference
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of ground motion orientation on predicted seismic compression

    Thumbnail
    Download
    PDF (701.6Kb)
    Date
    2020-04-22
    Authors
    Green, Russell
    Bahrampouri, Mahdi
    Metadata
    Show full item record
    Abstract
    Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially saturated sandy soils during earthquake shaking and has caused significant distress to overlying and nearby structures. The phenomenon can be well-characterized by load-dependent, interaction macro-level fatigue theories, which means that the nature of the accumulation of volumetric strain is a function of the absolute amplitude and sequencing of pulses in the loading function. One model that captures this behavior and that can be used to predict seismic compression is the expanded Byrne cyclic shear-volumetric strain coupling model. However, one potential implication of the load-dependent, interaction macro-level fatigue behaviour is that ground motion orientation will influence predicted settlements. To examine the significance of this, the seismic compression that occurred at the Kashiwazaki-Kariwa Nuclear Power Plant (KKNPP) site during the 2007, Mw6.6 Niigata-ken Chuetsu-oki, Japan, earthquake is analyzed using the expanded Byrne model. The horizontal motions recorded at the site by a down-hole array during this event are rotated in 5° increments and the predicted settlements due to seismic compression are computed. The predicted settlements range from 12.3 to 16.1 cm, with a geometric mean of the values for various orientations being 13.8 cm. These results are in general accord with the post-earthquake field observations and highlight the sensitivity of predicted magnitude of the seismic compression to ground motion orientation.
    URI
    https://repo.nzsee.org.nz/handle/nzsee/1754
    Published in
    • Proceedings of the 2020 New Zealand Society for Earthquake Engineering Annual Technical Conference

    Contact Us | Send Feedback
     

     

    Browse

    Entire RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Contact Us | Send Feedback